
1 . A brief introduction to 
design theory 

These lectures were given to an audience of design theorists; for 

those outside this class, the introductory chapter describes some of the 

concepts of design theory and examples of designs to which we shall refer. 

A t-design with parameters (v, k, ,\) (or a t - (v, k, ,\) desig~) 

is a collection ~ of subsets (called blocks) of a set S of v points, 

such that every member of ~ contains k points, and any set of t pOints 

is contained in exactly ,\ meJUbers of ~. Various conditions are usually 

appended to this definition to exclude degenerate cases. We assume that 

S and ~ are non-empty, and that v 2: k 2: t (so ,\ > 0). At-design 

with ,\ = I is called a Steiner system. Alternatively, a t-design may be 

defined to consist of a set of pOints and a set of blocks, with a relation 

called incidence between points and blocks, satisfying the appropriate 

conditions. 

Sometimes a t-design is defined so as to allow 'repeated blocks', 

that is, ~ is a family rather than a set, and the same subset of S may 

occur more than once as a block. (This is more natural with the 'rela­

tion' definition; simply omit the condition that any k points are incident 

with at most one block.) In these notes, we normally do not allow repeated 

blocks; where they are permitted, we shall say so. There are 'non­

trivial' t-designs with repeated blocks for every value of t; but the only 

known examples without repeated blocks with t > 5 are those in which 

every set of k points is a block. The existence of non-trivial t-designs 

with t> 5 is the most important unsolved problem in the area; even 

5-designs are sufficiently rare that new constructions are interesting. 

Of course, for Steiner systems the question of repeated blocks does not 

arise. Only two Steiner systems with t = 5, and two with t = 4 are 

known; these will be described later. * 

* Several more such systems have recently been constructed by 
R. H. F. Denniston. 
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Remark. A O-design is simply a collection of k-element subsets 

of a set. 

In a t- design, let A. denote the number of blocks containing a 
1 

given set of i points, with O:s i :s t. Counting in two ways the number 

of choices of t - i further points and a blQck containing all t distin­

guished points, we obtain 

(1. 1) 
k-i v-i 

A·(t .) = (t .)A. 
1 - 1 - 1 

It follows that A. is independent of the i points originally chosen; that 
1 

is, a t-design is also an i-design for O:s i :s t. The parameters A a 
(the total number of blocks) and \ (the number of blocks containing a 

given pOint) are usually /denoted by b and r respectively. With t = 1, 

i = 0, (1. 1) shows that, in any I-design, 

(1. 2) bk = vr. 

A 2-design is often called a block design, or simply a design; in 

the literature the term 'balanced incomplete block design', abbreviated 

to BIBD, is used in the case where not every k-subset is a block. In a 

2-design we have 

(1. 3) r(k - 1) = (v - I)A. 

An incidence matrix of a design is a matrix M whose rows and 

columns are indexed by the blocks and points of the design respectively, the 

entry in row B and column p being 1 if P E B, 0 otherwise. (The reader 

is warned that a different convention is often used, for example in the 

books by Dembowski [24] and Hall [33], with the result that our incidence 

matrix is the transpose of that appearing in these books. The present 

convention is adopted because we shall wish to regard the characteristic 

functions of blocks, or rows of M, as row vectors, and consider the sub­

space they span. ) 

The conditions that any block contains k points, any point lies in 

r blocks, and any pair of points lies in A blocks, can be expressed in 

terms of M: 
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(1. 4) MJ = kJ, 

JM = rJ, 

MTM = (r - A)1 + AJ. 

(Here, as throughout this book, I is the identity matrix, and J the 

matrix with every entry 1, of the appropriate size.) It is not difficult to 

show that 

v-I 
det( (r - A)1 + AJ) = rk(r - A) ; 

so, if r> A, the matrix MTM is non-singular, from which follows 

Fisher's inequality: 

(1. 5) Theorem. In a 2-design with k:s v-I, we have b 2- V. 

Furthermore, if b = v, then MJ = JM; thus M commutes with 
-1 T 

(r - A)1 + AJ, and so with ((r - A)1 + AJ)M = M . So 

MMT = (r - A)1 + AJ, from which we see that any two blocks have A 

common pOints. 

(1. 6) Theorem. In a 2-de~_~~n with k:s v-I, the following are equiva­

lent: 

(i) b = v; 

(ii) r = k; 

(iii) any two blocks have A common points. 

A 2-design satisfying the conditions of (1. 6) is called symmetric. 

Its dual is obtained by reversing the roles of points and blocks, identifying 

a point with the set of blocks containing it; the dual is a symmetric 2-

design with the same parameters, having incidence matrix M T. A 

polarity of a symmetric design :D is a self-inverse isomorphism between 

:D and its dual, that is, a one-to-one correspondence u between the 

points and blocks of :D such that, for any pOint p and block B, p E B 

if and only if BU E pU. A point p (resp. a block B) is absolute with 

respect to the polarity IJ if P E pIJ (resp. BIJ E B). 

(1. 5) and (1. 6) follow from a more general result, which we will 

need in chapter 4. 
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(1. 7) Theorem. In a 2-design, the number of blocks not disjoint from 

a given block B is at least k(r_I)2 j((k-I)(A-I) + (r-I)). Equality holds 

if and only if any block not disjoint from B meets it in a constant number 

of points; if this occurs, the constant is 1 + (k-I)(A-I)j(r-I). 

Proof. Let B1 , ••• , B d be the blocks different from but not 

disjoint from B, and x. = IBn B.I. Counting in two ways the number 
1 1 

of choices of one or two points of B and another block containing them, 

we obtain (with summations running from 1 to d): 

So 

LX. = k(r - I), 
1 

L x.(x. - I) = k(k - I)(A - I). 
1 1 

'" 2 2 f.J (x. - x) = dx - 2k(r - I)x + k((k - I)(A - I) + (r - I)). 
1 

This quadratic expression in x must be positive semi-definite, and can 

vanish only if all x. are equal; the common value must then be 
1 

1 + (k - I)(A - I) j(r - I). J 

Remark. Now (1. 5) follows from b-I 2': k(r_I)2 j((k-I)(A-I)+(r-I)) 

on applying (1. 2) and (1. 3). Also, if b = v, then r = k, and 

1 + (k-I)(A-I)j(r-I) = A. 

The Bruck-Ryser-Chowla theorem gives necessary conditions for 

the existence of symmetric designs with given parameter sets (v, k, A) 

satisfying (v - I)A = k(k - I). 

(1. 8) Theorem. Suppose there exists a symmetric 2 - (v, k, A) design. 

Put n = k - A. Then (i) if v is even then n is a square; (ii) if v is 

odd, then the equation 

has a solution in integers (x, y, z), not all zero. 

The incidence equation M T M = nI + AJ shows that the matrices I 

and nI + AJ are rationally cogredient; (1. 8) can then be verified by 
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applying the Hasse-Minkowski theorem to them, though more elementary 

proofs are available. The Hasse-Minkowski theorem guarantees the 

existence of a rational matrix M satisfying the incidence equation when­

ever the conditions of (1. 8) are satisfied; but this does not mean that a 

design exists, and indeed it is not known whether these conditions are 

sufficient for the existence of a design. We shall have more to say about 

the case (v, k, ~) = (111, 11, 1) in chapter 11. 

A Hadamard matrix is an n x n matrix H with entries ±I satis­

fying HHT = HTH = nI. (It is so called because its determinant attains 

a bound due to Hadamard) Changing the signs of rows and columns 

leaves the defining property unaltered, so we may assume that all entries 

in the first row and column are + 1. If we then delete this row and column 

and replace -1 by 0 throughout, we obtain a matrix M which (if n> 4) 

is the incidence matrix of a symmetric 2 - (n-I, ~n-I, ~n-I) design. 

Such a design is called a Hadamard 2-design. From a design with these 

parameters, we can recover a Hadamard matrix by reversing the con­

struction. However, a Hadamard matrix can be modified by permuting 

rows and columns, so from 'equivalent' Hadamard matrices it is possible 

to obtain different Hadamard 2-designs. 

Let H be a Hadamard matrix with n > 4, in which every entry 

in the first row is + 1. Any row other than the first has ~ n entries + 1 

and ~n entries -1, thus determining two sets of ~n columns. (This 

partition is unaffected by changing the sign of the row.) If we take columns 

as points, and the sets determined in this way as blocks, we obtain a 

3 - (n, ~n, ~n-I) design called a Hadamard 3-design. Any design with 
4 

these parameters arises from a Hadamard matrix in this way. 

It should be pointed out that Hadamard matrices are very plentiful. 

Examples are known for many orders n divisible by 4 (the smallest un­

settled case at present is n = 188), and for moderately small n there 

are many inequivalent matrices. 

A projective geometry over a (skew) field F is, loosely speaking, 

the collection of subspaces of a vector space of finite rank over F. The 

points of the geometry are the subspaces of rank 1. A projective geo­

metry is often regarded as a lattice, in which points are atoms and every 
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element is a join of atoms. We shall identify a subspace with the set of 

points it contains, regarded as a subset of the point set. The dimension 

of a subspace is one less than its vector-space rank (so points have 

dimension 0); the dimension of the geometry is that of the whole space. 

Lines and planes are subspaces of dimension 1 and 2 respectively; hyper­

planes are subspaces of codimension 1. Thus, familiar geometric state­

ments hold: two points lie in a unique line, a non-incident point-line pair 

lies in a unique plane, etc. 

H F is finite, the subspaces of given positive dimension are the 

blocks of a 2-design. The hyperplanes form a symmetric 2-design, which 

we shall denote by PG(m, q), where m is the dimension and q = I F I ; 
its parameters are ((qm+l _ 1)/(q _ 1), (qm _ 1)/(q _ 1), (qm-l - 1)/(q-l)). 

These facts can be verified by counting arguments, or by using the transi­

tivity properties of the general linear group. Note that PG(m, 2) is a 

Hadamard 2-design for all m 2: 2. 

A projective plane is a symmetric 2-design with A = 1. This 

agrees with the previous terminology, in that PG(2, q) is a projective 

plane; by analogy, the blocks of a projective plane are called lines. We 

will modify our notation and use PG(2, q) to represent any projective 

plane with k = q + 1; q is not even restricted to be a prime power 

(though it is in all known examples). Thus PG(2, q) may denote several 

different designs; however, the symbol PG(m, q) is unambiguous for 

m > 2. This is motivated by various characterisations; we mention one 

due to Veblen and Young [69]: 

(1. 9) Theorem. A collection of subsets (called 'lines') of a finite set of 

points is the set of lines of a projective geometry or projective plane if 

the following conditions hold: 

(i) any line contains at least three points, and no line contains 

every point; 

(ii) any two points lie on a unique line; 

(iii) any three non-collinear points lie in a subset which, together 

with the lines it contains, forms a projective plane. 

Projective planes can be axiomatised in a way which permits the 

extension of the definition (and of (1. 9)) to infinite planes; the require-
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ments are that any two points lie on a unique line, any two lines have a 

unique common point, and there exist four pOints of which no three are 

collinear. Projective planes over fields are called Desarguesian, since 

they are characterised by the theorem of Desargues. 

An affine (or Euclidean) geometry of dimension m is the collection 

of cosets of subspaces of a vector space of rank m over a field F. 

Here, the geometric dimension of a coset is equal to the vector-space 

dimension of the underlying subspace; points are just vectors (or cosets 

of the zero subspace). Again, we identify a subspace with the set of 

points it contains. If F is finite, the subspaces of given positive dimen­

sion form a 2-design. If 1 F 1 = 2, then any line has two pOints (and any 

set of two points is a line), while the subspaces of given dimension d> 1 

form a 3-design. We denote the design of points and hyperplanes by 

AG(m, q), where q = 1 F I. AG(m, 2) is a Hadamard 3-design. 

An affine plane AG(2, q) can be defined to be a 2 - (q2, q, 1) 

design. (It is also possible to give an axiomatic definition of an affine 

plane, in terms of the concept of 'parallelism'.) Again our notation is 

ambiguous. The exact analogue of the Veblen- Young theorem has been 

proved by Buekenhout [15] under the restriction that each line has at least 

four points; Hall [33] has given a counterexample with three pOints on any 

line. Again, affine planes over fields are characterised by Desargues' 

theorem. 

Finally, we note that an affine geometry can be obtained from the 

corresponding projective geometry by deleting a hyperplane (the 'hyper­

plane at infinity') together with all of its subspaces, while the projective 

geometry can be recovered from the affine geometry. The same is true 

for projective and affine planes. 

We shall consider briefly in chapter 4 the affine symplectic geo­

metry of dimension 4 over GF(2). Here the vector space carries a 

symplectic bilinear form, and the blocks of the design are the cosets of 

those subspaces of rank 2 which are totally isotropic with respect to the 

form. 

Given at-design !D, the derived design !Dp with respect to a 

point p is the (t-I)-design whose points are the points of ~ different 

from p, and whose blocks are the sets B - {p) for each block B of 
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:0 which contains p. The residual design :op with respect to p has the 

same point set as :Op' but its blocks are the blocks of :0 not containing 

p; it is also a (t-l)-design. 

A converse question, which is very important in design theory and 

permutation groups, is that of extendability: 

given a t-design, is it isomorphic to :Op for some (t+ I)-design :O? :0 

is called an extension of the given design. An extension may not exist, 

or there may be more than one. (To construct the extension, we must 

find a suitable design :op.) By applying (1. 2) to the extension, we obtain 

a simple necessary condition for extendability: 

(1. 10) Proposition. If a t - (v, k, A) design with b blocks is extend­

able, then k + 1 divides b(v + 1). 

The 2-design PG(2, q) has v= q2 + q + 1 = b, k = q + 1. 

Applying (1. 10), we obtain a result of Hughes [39]: 

(1. 11) Theorem. !!. PG(2, q) is extendable, then q = 2, 4, or 10. 

Much effort has been devoted to these projective planes and their 

extensions. Further application of (1. 10) shows that PG(2, 2) and 

PG(2, 10) can be extended at most once, and PG(2, 4) at most three 

times. In fact, PG(2, 2) is unique, and has a unique extension, namely 

AG(3, 2). PG(2, 4) is also unique, and can be extended three times, 

each successive extension being unique (up to isomorphism). The exis­

tence of PG(2, 10) is still undecided (we will discuss this further in 

chapter 11) and its extendability appears rather remote at present. 

Hughes showed further that there are only finitely many extendable 

symmetric 2 - (v, k, A) designs with any given value of A. The strong­

est result in this direction is due to Cameron [17]. We will use it (and 

indicate the proof) in chapter 4. 

(1. 12) Theorem. If a symmetric 2 - (v, k, A) design :0 is extendable, 

then one of the following occurs: 

8 
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(iv) v= 495, k= 39, ~= 3. 

Regarding case (i) of this result, a Hadamard 2-design is uniquely 

extendable. For it is not hard to show that, in a Hadamard 3-design, 

the complement of a block is a block; then the unique extension of the 

Hadamard 2-design !D is obtained by adding the 'extra point' to each 

block of !D and then defining the complement of each such block to be 

also a block in the extension. Apart from Hadamard designs, the only 

known extendable symmetric 2-design is PG(2, 4) (case (ii) with ~ = 1); 

it is also the only twice-extendable symmetric 2-design. 

For affine planes, the situation is a little different, since the 

necessary condition (1. 10) is always satisfied. An extension of an affine 

plane (that is, a 3 - (q2 + 1, q + 1, 1) design) is called an inverSive plane 

or Mbbius plane. Many examples are known; the affine planes over finite 

fields are all extendable, sometimes in more than one way. However, 

Dembowski [22], [23] has shown that an inversive plane with even q can 

be embedded in PG(3, q) in a natural way (so q is a power of 2). Using 

this and a further embedding technique in conjunction with (1. 10), Kantor 

[42] showed that if AG(2, q) is twice extendable (with q> 2), then 

q = 3 or 13. In fact, AG(2, 3) is three times extendable; the extensions 

are 'embedded' in the corresponding extensions of PG(2, 4), as well as in 

the projective geometries over GF(3). It is not known whether any 

AG(2, 13) is twice extendable. 

The extensions of PG(2, 4) and AG(2, 3) are so important that 

we shall give a brief outline of their construction. See also Witt [73], 

[74], Lllneberg [46], Todd [68], Jonsson [41], etc. 

Starting from PG(2, 4), the 5 - (24, 8, 1) design is constructed 

by adding three points p, q, r; the blocks containing all three of these 

points are the sets {p, q, r} U L, where L is a line of PG(2, 4). We 

must specify the blocks which do not contain all three of these points, as 

subsets of PG(2, 4). They turn out to be natural geometric objects: 

hyper ovals , subplanes PG(2, 2), and symmetric differences of pairs of 

lines. Indeed, these are the only possible candidates; in this way the 

uniqueness of the designs can be shown. (Important for this is the fact, 

proved by simple counting, that two blocks of a 5 - (24, 8, 1) design 
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have 0, 2 or 4 common points.) Also, if U is a unital in PG(2, 4) (the 

set of absolute points of a polarity of unitary type), then {p, q, r} U U 

is the point set of a 5 - (12, 6, 1) design. Alternatively, the latter 

design can be obtained by extending AG(2, 3) three times, identifying 

the added blocks with geometric objects in the plane as before. 

Another construction for the 5 - (12, 6, 1) design uses the fact 

that the symmetric group S 6 has an outer automorphism. Taking two 

sets of six elements on which S acts in the two possible ways, the 
6 

blocks of the 5 - (12, 6, 1) design can be defined in terms of the permu-

tations. This method also gives a uniqueness proof. The process can be 

continued: the automorphism group M12 of the design itself has an outer 

automorphism, and a similar construction produces the 5 - (24, 8, 1) 

design. 

It is possible to construct the 5-fold transitive Mathieu groups 

M 12 and M 24 directly, and to deduce properties of the designs from 

them. 

The techniques of coding theory can be used to construct the design 

in a purely algebraic way. We shall describe this in chapters 11 and 12. 

In higher dimensions, the situation is simpler. PG(m, 2) (with 

m> 2) has an extension only if q = 2, when the Hadamard 3-design 

AG(m + 1, 2) is the unique extension; AG(m, q) is not extendable for 

m> 2. 

For further reading, see Dembowski [24], chapter 2 for designs, 

section 1. 4 for projective and affine geometries, chapters 3-5 for pro­

jective planes, and chapter 6 for inversive planes. Block designs are 

also discussed in the books by Hall [33] and Ryser [56]. 
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