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PERFECT CODES AND DISTANCE-TRANSITIVE GRAPHS

NORMAN BIGGS

1. Introduction

Let Sk denote the set of sequences of k binary digits; in coding

theory a subset C of Sk is called a binary code of block length k., If

a code-word c¢ € C is 'transmitted', and a sequence s € Sk is 'received’,
then the number of errors is the number of places in which s differs

from c. One defines
Ze(c) =1{s ¢ Skls and c¢ differ in at most e places},

and says that C is an e-error correcting code if the sets Ee(c), as ¢

runs through C, are disjoint. If these sets partition Sk, we have a
perfect code.

In coding theory it is customary to introduce the vector space
structure of the set Sk; however, we shall take the view that the elements
of Sk are best regarded as the vertices of a graph, two vertices being
adjacent whenever they differ in just one place. We denote this graph by
the symbol Qk’ and note that it is the graph formed by the vertices and
edges of a hypercube in k dimensions. The distance function 2 in Qk

enables us to count errors, and we now write
2= {w eVQkIG(v, w) <el.

In these terms, an e-error correcting binary perfect code, of block
length k, is a subset C of VQk with the property that the sets Z)e(c),
as ¢ runs through C, partition VQk' We shall referto C as a
perfect e-code in Qk’ and we shall always take e = 1.

It is remarkable that there are relatively few pairs (k, e) for

which a perfect e-code in Q, exists [7], [8]. The complete list is:
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@) k = e, the trivial codes with |C| =1;

(ii) k = 2e + 1, the 'repetition' codes with [Cf =2;
(iii) k=2"-1, e =1, the Hamming codes [8];

(iv) k = 23, e = 3, the binary Gelay code [8].

We are led to consider the possibility of replacing Qk by other
graphs. If T is a finite, connected, simple graph, with distance function
9, and the sets Ee(v) are defined as for Qk’ then we say that a subset
C of VI is a perfect e-code in T if the sets Ee(c), ¢ € C, partition
VT.

Now it is clear that for any given e = 1 we can construct, at
will, graphs I" which possess perfect e-codes, for we may just take a
set of neighbourhoods Ee(c) and join their free ends by extra edges;
however, the graphs so constructed are uninteresting. We claim that
the natural setting for the problem of perfect codes is the class of

distance-transitive graphs [2]. This claim will be justified in Section 3,

after some motivation in Section 2.

2. Perfect 1-codes in regular graphs

Suppose that T' is regular, with valency k, and let A denote
its adjacency matrix. If ¢ is the column vector whose entries are 1
in positions corresponding to the vertices of a perfect 1-code in T', and

0 elsewhere, then
Ac=u-c

where u is the vector each of whose entries is 1. Let
w=u-(k+ 1.

Then we have
Aw=Au-(k+1Ac=ku- (k+ 1)u-¢) = -w.

In other words, -1 is an eigenvalue of A, corresponding to the eigen-
vector w. Since A is a rational symmetric matrix, its minimum poly-
nomial u(t) belongs to the ring Q[t] of polynomials with rational co-

efficients. We call pu(t) the minimum polynomial of I, and we have
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proved:

Theorem 1. If the regular graph I" has a perfect 1-code, then

t+ 1 is a divisor of u(t) in the ring Q[t].

The result indicates that the minimum polynomial of a graph is
relevant to the study of perfect codes in the graph. In the case of a
distance-transitive graph, not only do we have a simple method of finding
the minimum polynomial, but there is also an extension of Theorem 1 for

perfect e-codes with e > 1.

3. Perfect e-codes in distance transitive graphs

The graph I is distance-transitive if whenever u, v, x, y are

vertices of T' such that 8(u, v) = 8(x, y) then there is an automorphism
of T'" taking u to x and v to y. A full treatment of the properties of
such graphs may be found in [2], but we shall sketch the relevant parts
of the theory here.

Associated with each distance-transitive graph TI', having valency

k and diameter d, is an intersection array

1 c2 e cd_1 cd
() = 0 a a, . . . oag, 3y ;
*
kb b, . . . by,
from this we can calculate the eigenvector sequence Vo(t)’ v, ®,..., vd(t),

each term of which belongs to the ring Q[t]. The recursion defining this
sequence is

vo(t) =1, vl(t) =1,

Civi(t) + (ai_1 - t)vi_l(t) + bi-2vi-2(t) =0 (i=2,...,d).

For 0 =1i=4d we define Xi(t) = vo(t) + V1(t) +... + vi(t); then it can

be shown that the minimum polynomial of I is

p(t) = (t - K)x (t).

d

The proof of the following theorem is given in [1].
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Theorem 2. If the distance-transitive graph T’ has a perfect

e-code, then xe(t) is a divisor of u(t) in the ring Q[t].

We notice that xl(t) =1t + 1, so that we have verified incidentally
the result of Theorem 1 in this special case,

The graph Qk is a distance-transitive graph, with intersection

array
* 1 2 . . . k-1 k
Q)=40 o o . . . 0 0
k k-1 k-2 ., ., . 1 *

Now it follows from [1, Section 5] that, if we write s = 3(k - t), then

e .
O x=2 O<—1>1(S;1><‘;jf

),

(ii) #(t) = Rs(s-1)(s-2) ... (s-k) (R a rational constant).

We deduce from Theorem 2 that if there is a perfect e-code in Qk’ then
the polynomial on the right of (i) must have its e zeros corresponding
to s intheset {0, 1, ..., k}. This is the theorem of Lloyd [8], in the
classical case, and it was by using this theorem that the list in Section 1
was proved to be complete.

It is now possible to state three reasons why the question of

perfect codes should be considered in the context of distance-transitive

graphs.

(a) The classical question is a special case.

(b) The theorem of Lloyd generalizes and simplifies.
(c) Other interesting examples arise.

4, Examples

Examples of perfect codes in distance-transitive graphs are rare;
in fact, it is true to say that examples of distance-transitive graphs are
rare! However, this merely adds interest to the examples which are
known,

It is clear that the graphs Qk can be generalized by replacing
the binary 'alphabet’ by an alphabet of q symbols, for any q > 2. This
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generalization is part of classical coding theory, and is treated from our
present viewpoint in [1]. It is known that, apart from some perfect
1-codes, the only other code in this case is the ternary Golay 2-code [8].

In the twelve trivalent distance-transitive graphs [4] there are
only two non-trivial perfect codes: the repetition 1-code in Q3 and a
1-code in the graph with 28 vertices. The latter code is evident from
the construction of the graph given in Section 1 of [4].

We now turn to the odd graphs Ok (k = 3). The graph Ok has
for its vertices the (k-1)-subsets of a (2k-1)-set, two vertices being
adjacent whenever the subsets are disjoint; Ok is a distance-transitive
graph with valency k and diameter k - 1. It can be shown that the

eigenvalues of Ok are the integers (-1)k—1i (1 =1i=k), sothat

PO = € -+ k- D(t-k+2)... ¢+ D5,
1t is also easy to give explicit expressions for the first few terms of the
eigenvector sequence, and from these we find

x =1, x®O=t+1, x({b)= t2+t- (k- 1),

x, () =5t + D2 +t- (2k - 2)).

Theorem 3. Suppose that there is a perfect e-code in Ok,
(e=1, 2, 3). Then

(i) e=1= k is even;

(ii) e=2= k= 4r2 - 2r + 1 for some natural number r;

(iii) e=3= k= 2(4r2 - 3r + 1) for some natural number r.

Proof. (i) For a 1-code in Ok we require that t+1 isa
factor of u(t), and this is so if and only if k is even.

(ii) For a 2-code in Ok we require that t2 +_t - (k - 1) divides
p(t). Since the zeros of u(t) are the integers (—1)k'li (1=i=k) we

must have
t2 +t- (k_ ]_): (t- Q)(t'ﬁ),

where o and B are integers having the stated form. Equating co-

efficients of t we get 8= -(a + 1), and we may assume that a > 0,

5

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521204542
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-20454-5 - Combinatorics

Edited by T. P. McDonough and V. C. Mavron
Excerpt

More information

B < 0. Equating coefficients of unity we get
k- 1:—03: a(a+1),

sothat k-1 is even and k is odd. Since « is a positive integral
zero of pu(t), k - @ must be even, and so ¢« is odd. Writing o = 2r - 1,
we get k=2r(2r-1)+1= ar? _or + 1, as required.

(iii) This part is proved by an argument like that in (ii).

Our condition that k is even for a 1-code in Ok is a weak one,
and it can be improved by the following direct argument. Let C be a
subset of VOk which is a perfect 1-code; then any two distinct vertices
u, v in C satisfy 8(u, v) = 3. But if these vertices (regarded as
(k-1)-subsets of a (2k-1)-set) have k - 2 elements in common, then
d(u, v) = 2. Consequently each set of k - 2 elements occurs at most
once as a subset of the elements in a vertex belonging to C. Since each
vertex contains k - 1 sets of k - 2 elements we have

%k-1
)

lcl == - o

1
k-1

with equality only if each (k-2)-set occurs exactly once in a vertex of C,
2k-1

) vertices are partitioned into |C
k-1

But for a perfect 1-code, the (

sets of k + 1, and so

Thus every (k-2)-set occurs just once in a vertex of C, and these vertices
are the blocks of a Steiner system S(k-2, k-1, 2k-1). (This result is due
to P. J. Cameron,) There are only two such systems known: $(2, 3, 7)
and S(4, 5, 11), giving rise to perfect 1-codes in O4 and 06. In fact
the divisibility conditions for a Steiner system imply that k + 1 must be
prime, which is considerably stronger than our requirement that k + 1
must be odd.

There are no known e-codes in Ok for k-1> e > 1,

We now mention a situation which generalizes the 'repetition’' codes
in the classical case. We say that a connected graph T, of diameter d,

is antipodal if o(u, v) = d and 9(u, w) = d implies that v=w or
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(v, w) = d. The importance of this concept lies in the fact that a
distance-transitive graph in which the automorphism group acts im-
primitively on the vertices must be either bipartite or antipodal [6]. An
antipodal distance-transitive graph I' of odd diameter d= 24" + 1 has
a derived graph TI'', with diameter d', which is also distance-transitive;
details of this situation are given in [3]. We find that |VT| = r|VI"|
for some integer r = 2, and T has a perfect d'-code C with [CI =r.
Furthermore, the calculations in [3] show that, for T, xd,(t) divides
p(t), in accordance with Theorem 2.

Finally, we construct a special example. Consider the projective
plane PG(2, 32); this plane admits a unitary polarity induced by the
field automorphism 6+ 0> of GF(32). The plane contains 91 points

and 91 lines, which may be classified as follows [5]:

28 isotropic points (points which lie on their polar lines);

63 non-isotropic points (points which do not lie on their polar lines);

28 tangents (lines containing 1 isotropic point and 9 non-
isotropic points);

63 secants (lines containing 4 isotropic points and 6 non-

isotropic points).

We construct a graph W, whose vertices are the 63 non-isotropic points,
and two are adjacent whenever each lies on the polar line of the other.

Then W is a distance-transitive graph with intersection array

* 1 1 3
0 1 1 3
6 4 4 *

and minimum polynomial
(t - &)t + 1)t - 9).

The graph W has a perfect 1-code, consisting of the 9 vertices corres-

ponding to the non-isotropic points on any tangent.
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GENERALISATION OF FISHER'S INEQUALITY TO FIELDS WITH MORE
THAN ONE ELEMENT

PETER J. CAMERON

Many people (Petrenjuk, Wilson, Ray-Chaudhuri, Noda, Bannai,
Delsarte, Goethals, and Seidel among them) have contributed to these
results; some of the ideas arose in several places. So this article will
tend to be a commentary on the facts. 1 define a t-design, with para-
meters v, k, bt’ to be a collection of k-subsets of the v-set X, called
'blocks', with the property that any t-subset is contained in precisely
bt blocks; I require the non-degeneracy condition t =k =v-t. A
t-design is a t'-design for 0 =t' =t. I shall use b for the number of
blocks, though notation suggests bo' Fisher's inequality states that,
in a 2-design, b = v; furthermore, if equality holds, then the 2-design
is called symmetric, and has the property that the size of the inter-
section of two blocks is constant. The generalisations I shall discuss are:
(1) In a 2s-design, b = (Z); if equality holds, then for distinct blocks
B, B, |B n B'l takes just s distinct values.

(2) In a (2s-2)-design in which, for distinct blocks B, B', |B n B'|
takes just s distinct values, b = (Z)'

(In (2) it is also true that the blocks carry an 'association scheme with
s classes', defined in the obvious way. )

If the definition of a t-design is weakened to allow 'repeated blocks',
(1) remains true, while the only counterexamples to (2) are obtained by
taking a (2s-2)-design without repeated blocks in which IB n B ] takes
just s - 1 values (such a design has exactly (S Y 1) blocks), and re-
peating each block the same number of times.

The only known examples of equality in (1) with s = 2 are the
Steiner system S(4, 7, 23) (a 4-design with v =23, k=7, b4 = 1) and
its complement.

(1) is clearly a generalisation of Fisher's inequality; (2) is slightly

less obviously so - we must observe that the 'dual' of the case s =1 of

9
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(2) is the case s =1 of the following strengthened version of the first
part of (1):
(3) Let ® be a collection of subsets of a set X with |X| = v, and
s an integer, such that

(i) for s =i = 2s, the number of members of & containing
an i-subset of X is a constant bi’ depending only on i;

(ii) some B € ® satisties s = !B[ =V -s.
Then f@laz(Zy

Several people have observed that the concept of a t-design can be
generalised as follows. Given a finite field F, a t-design over F with
parameters v, k, bt is a collection of k-dimensional subspaces of a
v-dimensional vector space over F, called 'blocks', with the property
that any t-dimensional subspace is contained in precisely bt blocks;
again I require t =k =v - {. Replacing 'design' with 'design over F',
!Bny)wMuMmmanamumemmCmmamtQ)mmme
function [‘S’]F giving the number of s-dimensional subspaces of a v-
dimensional vector space over F, statements (1) and (2) remain valid,
and their proofs require only trivial modifications. Similarly (3) can
easily be converted into a valid statement:
(3" Let & be a collection of subspaces of a vector space X over F,
with dim(X) = v, and s an integer, such that

(1) for s =i = 2s, the number of members of ® containing
a given i-dimensional subspace of X is a constant bi’ depending only
on i;

(ii) some B € ® satisfies s = dim(B) =v - s.
Then |G| = [‘S’]F.

The proof I give below is essentially that of R. M. Wilson for the
original statement (3). It was communicated to me by J. Doyen.

Suppose IFI =4q; let V and W be subspaces of the vector
space X over F, with W2V, dim(X) = a, dim(W) = b, dim(V) = c.
The number of subspaces U of X with dim(U)=d=c¢, UnW=1V, is

b+1 a b+d-c-1

)...a -¢q )
c+1 d  d-1
Yooo@ - q )

@®- M@ - q
@ - q%%- g
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