
Part I

Motivating examples and major applications

A dynamical system is a mathematical model of a system evolving in time. Most
models in mathematical physics are dynamical systems. If the system has only a
finite number of ‘state variables’, then its dynamics can be encoded in an ordinary
differential equation (ODE), which expresses the time derivative of each state vari-
able (i.e. its rate of change over time) as a function of the other state variables. For
example, celestial mechanics concerns the evolution of a system of gravitationally
interacting objects (e.g. stars and planets). In this case, the ‘state variables’ are vec-
tors encoding the position and momentum of each object, and the ODE describes
how the objects move and accelerate as they interact gravitationally.

However, if the system has a very large number of state variables, then it is no
longer feasible to represent it with an ODE. For example, consider the flow of heat
or the propagation of compression waves through a steel bar containing 1024 iron
atoms. We could model this using a 1024-dimensional ODE, where we explicitly
track the vibrational motion of each iron atom. However, such a ‘microscopic’
model would be totally intractable. Furthermore, it is not necessary. The iron
atoms are (mostly) immobile, and interact only with their immediate neighbours.
Furthermore, nearby atoms generally have roughly the same temperature, and move
in synchrony. Thus, it suffices to consider the macroscopic temperature distribution
of the steel bar, or to study the fluctuation of a macroscopic density field. This
temperature distribution or density field can be mathematically represented as a
smooth, real-valued function over some three-dimensional domain. The flow of
heat or the propagation of sound can then be described as the evolution of this
function over time.

We now have a dynamical system where the ‘state variable’ is not a finite system
of vectors (as in celestial mechanics), but is instead a multivariate function. The
evolution of this function is determined by its spatial geometry – e.g. the local
‘steepness’ and variation of the temperature gradients between warmer and cooler
regions in the bar. In other words, the time derivative of the function (its rate
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2 Examples and applications

of change over time) is determined by its spatial derivatives (which describe its
slope and curvature at each point in space). An equation that relates the different
derivatives of a multivariate function in this way is a partial differential equation
(PDE). In particular, a PDE which describes a dynamical system is called an
evolution equation. For example, the evolution equation which describes the flow
of heat through a solid is called the heat equation. The equation which describes
compression waves is the wave equation.

An equilibrium of a dynamical system is a state which is unchanging over time;
mathematically, this means that the time-derivative is equal to zero. An equlib-
rium of an N-dimensional evolution equation satisfies an (N − 1)-dimensional
PDE called an equilibrium equation. For example, the equilibrium equations cor-
responding to the heat equation are the Laplace equation and the Poisson equation
(depending on whether or not the system is subjected to external heat input).

PDEs are thus of central importance in the thermodynamics and acoustics of
continuous media (e.g. steel bars). The heat equation also describes chemical
diffusion in fluids, and also the evolving probability distribution of a particle
performing a random walk called Brownian motion. It thus finds applications
everywhere from mathematical biology to mathematical finance. When diffusion
or Brownian motion is combined with deterministic drift (e.g. due to prevailing
wind or ocean currents) it becomes a PDE called the Fokker–Planck equation.

The Laplace and Poisson equations describe the equilibria of such diffusion pro-
cesses. They also arise in electrostatics, where they describe the shape of an electric
field in a vacuum. Finally, solutions of the two-dimensional Laplace equation are
good approximations of surfaces trying to minimize their elastic potential energy –
that is, soap films.

The wave equation describes the resonance of a musical instrument, the spread
of ripples on a pond, seismic waves propagating through the earth’s crust, and
shockwaves in solar plasma. (The motion of fluids themselves is described by yet
another PDE, the Navier–Stokes equation.) A version of the wave equation arises
as a special case of Maxwell’s equations of electrodynamics; this led to Maxwell’s
prediction of electromagnetic waves, which include radio, microwaves, X-rays,
and visible light. When combined with a ‘diffusion’ term reminiscent of the heat
equation, the wave equation becomes the telegraph equation, which describes the
propagation and degradation of electrical signals travelling through a wire.

Finally, an odd-looking ‘complex’ version of the heat equation induces wave-
like evolution in the complex-valued probability fields which describe the position
and momentum of subatomic particles. This Schrödinger equation is the starting
point of quantum mechanics, one of the two most revolutionary developments in
physics in the twentieth century. The other revolutionary development was relativity
theory. General relativity represents spacetime as a four-dimensional manifold,
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Examples and applications 3

whose curvature interacts with the spatiotemporal flow of mass/energy through yet
another PDE: the Einstein equation.

Except for the Einstein and Navier–Stokes equations, all the equations we have
mentioned are linear PDEs. This means that a sum of two or more solutions to the
PDE will also be a solution. This allows us to solve linear PDEs through the method
of superposition: we build complex solutions by adding together many simple solu-
tions. A particularly convenient class of simple solutions are eigenfunctions. Thus,
an enormously powerful and general method for linear PDEs is to represent the
solutions using eigenfunction expansions. The most natural eigenfunction expan-
sion (in Cartesian coordinates) is the Fourier series.
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Heat and diffusion

The differential equations of the propagation of heat express the most
general conditions, and reduce the physical questions to problems of

pure analysis, and this is the proper object of theory.

Jean Joseph Fourier

1A Fourier’s law

Prerequisites: Appendix A. Recommended: Appendix E.

1A(i) . . . in one dimension

Figure 1A.1 depicts a material diffusing through a one-dimensional domain X

(for example, X = R or X = [0, L]). Let u(x, t) be the density of the material at
the point x ∈ X at time t > 0. Intuitively, we expect the material to flow from
regions of greater to lesser concentration. In other words, we expect the flow of the
material at any point in space to be proportional to the slope of the curve u(x, t) at
that point. Thus, if F (x, t) is the flow at the point x at time t , then we expect the
following:

F (x, t) = −κ · ∂x u(x, t),

where κ > 0 is a constant measuring the rate of diffusion. This is an example of
Fourier’s law.

1A(ii) . . . in many dimensions

Prerequisites: Appendix E.

Figure 1A.2 depicts a material diffusing through a two-dimensional domain X ⊂ R
2

(e.g. heat spreading through a region, ink diffusing in a bucket of water, etc.) We
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6 Heat and diffusion
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Figure 1A.1. Fourier’s law of heat flow in one dimension.
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Figure 1A.2. Fourier’s law of heat flow in two dimensions.

could just as easily suppose that X ⊂ R
D is a D-dimensional domain. If x ∈ X is a

point in space, and t ≥ 0 is a moment in time, let u(x, t) denote the concentration at
x at time t . (This determines a function u : X × R�− −→ R, called a time-varying
scalar field.)

Now let �F(x, t) be a D-dimensional vector describing the flow of the material
at the point x ∈ X. (This determines a time-varying vector field �F : R

D × R�− −→
R

D.)
Again, we expect the material to flow from regions of high concentration to

low concentration. In other words, material should flow down the concentration
gradient. This is expressed by Fourier’s law of heat flow:

�F = −κ · ∇u,

where κ > 0 is a constant measuring the rate of diffusion.
One can imagine u as describing a distribution of highly antisocial people; each

person is always fleeing everyone around them and moving in the direction with
the fewest people. The constant κ measures the average walking speed of these
misanthropes.
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1B The heat equation 7
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Figure 1B.1. The heat equation as ‘erosion’.

1B The heat equation

Recommended: §1A.

1B(i) . . . in one dimension

Prerequisites: §1A(i).

Consider a material diffusing through a one-dimensional domain X (for example,
X = R or X = [0, L]). Let u(x, t) be the density of the material at the location
x ∈ X at time t ∈ R�−, and let F (x, t) be the flux of the material at the location x

and time t . Consider the derivative ∂x F (x, t). If ∂x F (x, t) > 0, this means that the
flow is diverging1 at this point in space, so the material there is spreading farther
apart. Hence, we expect the concentration at this point to decrease. Conversely, if
∂x F (x, t) < 0, then the flow is converging at this point in space, so the material
there is crowding closer together, and we expect the concentration to increase.
To be succinct: the concentration of material will increase in regions where F

converges and decrease in regions where F diverges. The equation describing this
is given by

∂t u(x, t) = −∂x F (x, t).

If we combine this with Fourier’s law, however, we get:

∂t u(x, t) = κ · ∂x ∂x u(x, t),

which yields the one-dimensional heat equation:

∂t u(x, t) = κ · ∂2
x u(x, t).

Heuristically speaking, if we imagine u(x, t) as the height of some one-dimensional
‘landscape’, then the heat equation causes this landscape to be ‘eroded’, as if it
were subjected to thousands of years of wind and rain (see Figure 1B.1).

1 See Appendix E(ii), p. 562, for an explanation of why we say the flow is ‘diverging’ here.
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8 Heat and diffusion
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Figure 1B.2. Under the heat equation, the exponential decay of a periodic function
is proportional to the square of its frequency. (a) Low frequency, slow decay;
(b) high frequency, fast decay.

Example 1B.1 For simplicity we suppose κ = 1.

(a) Let u(x, t) = e−9t · sin(3x). Thus, u describes a spatially sinusoidal function (with
spatial frequency 3) whose magnitude decays exponentially over time.

(b) The dissipating wave. More generally, let u(x, t) = e−ω2·t · sin(ω · x). Then u is a
solution to the one-dimensional heat equation, and it looks like a standing wave whose
amplitude decays exponentially over time (see Figure 1B.2). Note that the decay rate
of the function u is proportional to the square of its frequency.

(c) The (one-dimensional) Gauss–Weierstrass kernel. Let

G(x; t) := 1

2
√

πt
exp

(−x2

4t

)
.

Then G is a solution to the one-dimensional heat equation, and looks like a ‘bell
curve’, which starts out tall and narrow, and, over time, becomes broader and flatter
(Figure 1B.3). ♦

Exercise 1B.1 Verify that all the functions in Examples 1B.1(a)–(c) satisfy theE©
heat equation. �

All three functions in Example 1B.1 start out very tall, narrow, and pointy,
and gradually become shorter, broader, and flatter. This is generally what the heat
equation does; it tends to flatten things out. If u describes a physical landscape,
then the heat equation describes ‘erosion’.

1B(ii) . . . in many dimensions

Prerequisites: §1A(ii).

More generally, if u : R
D × R�− −→ R is the time-varying density of some mate-

rial, and �F : R
D × R�− −→ R is the flux of this material, then we would expect the
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1B The heat equation 9
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Figure 1B.3. The Gauss–Weierstrass kernel under the heat equation.

material to increase in regions where �F converges and to decrease in regions where
�F diverges.2 In other words, we have

∂t u = −div �F.

If u is the density of some diffusing material (or heat), then �F is determined by
Fourier’s law, so we get the heat equation

∂tu = κ · div ∇u = κ �u.

Here, � is the Laplacian operator,3 defined as follows:

�u = ∂2
1 u + ∂2

2 u + · · · + ∂2
D u

Exercise 1B.2 (a) If D = 1 and u : R −→ R, verify that div ∇u(x) = u′′(x) = E©
�u(x), for all x ∈ R.

(b) If D = 2 and u : R
2 −→ R, verify that div ∇u(x, y) = ∂2

xu(x, y) +
∂2
yu(x, y) = �u(x, y), for all (x, y) ∈ R

2.
(c) For any D ≥ 2 and u : R

D −→ R, verify that div ∇u(x) = �u(x), for all
x ∈ R

D. �

By changing to the appropriate time units, we can assume κ = 1, so the heat
equation becomes

∂t u = �u.

2 See Appendix E(ii), p. 562, for a review of the ‘divergence’ of a vector field.
3 Sometimes the Laplacian is written as ∇2.
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10 Heat and diffusion
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Figure 1B.4. Five snapshots of the function u(x, y; t) = e−25 t · sin(3x) sin(4y)
from Example 1B.2.

For example,

� if X ⊂ R, and x ∈ X, then �u(x; t) = ∂2
x u(x; t);

� if X ⊂ R
2, and (x, y) ∈ X, then �u(x, y; t) = ∂2

x u(x, y; t) + ∂2
y u(x, y; t).

Thus, as we have already seen, the one-dimensional heat equation is given by

∂t u = ∂2
x u,

and the the two-dimensional heat equation is given by

∂t u(x, y; t) = ∂2
x u(x, y; t) + ∂2

y u(x, y; t).

Example 1B.2
(a) Let u(x, y; t) = e−25 t · sin(3x) sin(4y). Then u is a solution to the two-dimensional

heat equation, and looks like a two-dimensional ‘grid’ of sinusoidal hills and valleys
with horizontal spacing 1/3 and vertical spacing 1/4. As shown in Figure 1B.4, these
hills rapidly subside into a gently undulating meadow and then gradually sink into a
perfectly flat landscape.

(b) The (two-dimensional) Gauss–Weierstrass kernel. Let

G(x, y; t) := 1

4πt
exp

(−x2 − y2

4t

)
.

Then G is a solution to the two-dimensional heat equation, and looks like a mountain,
which begins steep and pointy and gradually ‘erodes’ into a broad, flat, hill.
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1C The Laplace equation 11

(c) The D-dimensional Gauss–Weierstrass kernel is the function G : R
D × R+ −→ R

defined by

G(x; t) = 1

(4πt)D/2
exp

(−‖x‖2

4t

)
.

Technically speaking, G(x; t) is a D-dimensional symmetric normal probability distri-
bution with variance σ = 2t . ♦

Exercise 1B.3 Verify that all the functions in Examples 1B.2(a)–(c) satisfy the E©
heat equation. �

Exercise 1B.4 Prove the Leibniz rule for Laplacians: if f, g : R
D −→ R are two E©

scalar fields, and (f · g) : R
D −→ R is their product, then, for all x ∈ R

D,

�(f · g)(x) = g(x) ·
(

� f (x)
)

+ 2
(
∇f (x)

)
•

(
∇g(x)

)
+ f (x) ·

(
� g(x)

)
.

Hint: Combine the Leibniz rules for gradients and divergences (see Propositions
E.1(b) and E.2(b) in Appendix E, pp. 562 and 564). �

1C The Laplace equation

Prerequisites: §1B.

If the heat equation describes the erosion/diffusion of some system, then an equilib-
rium or steady-state of the heat equation is a scalar field h : R

D −→ R satisfying
the Laplace equation:

�h ≡ 0.

A scalar field satisfying the Laplace equation is called a harmonic function.

Example 1C.1
(a) If D = 1, then �h(x) = ∂2

x h(x) = h′′(x); thus, the one-dimensional Laplace equation
is just

h′′(x) = 0.

Suppose h(x) = 3x + 4. Then h′(x) = 3 and h′′(x) = 0, so h is harmonic. More gener-
ally, the one-dimensional harmonic functions are just the linear functions of the form
h(x) = ax + b for some constants a, b ∈ R.

(b) If D = 2, then �h(x, y) = ∂2
x h(x, y) + ∂2

y h(x, y), so the two-dimensional Laplace
equation is given by

∂2
x h + ∂2

y h = 0,
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