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Preliminary results

This text assumes that the reader is familiar with abelian groups and unital modules

over associative rings with unity as contained in the texts by L. Fuchs [59] and

F. W. Anderson and K. R. Fuller [7]. We will reference but not prove those results

that we feel fall outside of the line of thought of this book. I suggest that you use this

chapter as a reference and nothing more. Skim through this chapter. Do not attempt

to plow through these results as though they were exercises.

1.1 Rings, modules, and functors

We will deal with several rings at once in our discussions so we will use more than

one symbol to denote rings. Thus R and E denote rings. Given right R-modules G

and H and an index set I, let c = card(I). For each i ∈ I let Gi
∼= G. Then

G(c) = G(I) = ⊕i∈IGi

Gc = GI =
∏

i∈I Gi

are the usual direct sum and direct product of c copies of G. We say that G is indecom-

posable if G ∼= H ⊕K implies that H = 0 or K = 0. The abelian group G is said to be

strongly indecomposable if each subgroup of finite index in G is an indecomposable

group.

Let G and H be right R-modules. As usual

EndR(G)

is the ring of R-endomorphisms f : G −→ G and

HomR(G, H )

is the group of R-module homomorphisms f : G −→ H . We consider G as

a left EndR(G)-module by setting f · x = f (x) for f ∈ EndR(G) and x ∈ G.

Also HomR(G, H ) is a right EndR(G)-module if we define x · f = x ◦ f for each
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2 Preliminary results

x ∈ HomR(G, H ) and f ∈ EndR(G). A right module over EndR(G) is called an

endomorphism module. Specifically, HomR(G, H ) is an endomorphism module.

The right R-module G is self-small if for each cardinal c the canonical injection

HomR(G, G)(c) −−−→ HomR(G, G(c))

is an isomorphism. Equivalently, given an index set I and an R-module map φ :

G −→ G(I) there is a finite subset J ⊂ I such that φ(G) ⊂ G(J ). Finitely generated

modules are self-small, as are the abelian subgroups of finite-dimensional Q-vector

spaces. (Such groups are called torsion-free finite rank groups in the literature). The

quasi-cyclic group Z(p∞) is not self-small for primes p ∈ Z. (See [59].)

Let E be ring. The Jacobson radical of E is the ideal J (E) defined as follows.

J (E) = ∩{M M ⊂ E is a maximal right ideal }

= ∩{M M ⊂ E is a maximal left ideal }

= {r ∈ E 1 + rx is a unit in E for each x ∈ E}

In particular, if J ⊂ E is a right ideal such that J + J (E) = E then J = E.

We say that E is a local ring if any of the following equivalent properties hold.

1. E possesses a unique maximal right ideal M .

2. J (E) is the unique maximal right ideal of E.

3. u ∈ E is a unit of E iff u �∈ J (E).

Nakayama’s theorem 1.1. Let M be a finitely generated right R-module and let

N ⊂ M be an R-submodule of M. If N + MJ (R) = M then M = N.

The right ideal I ⊂ E is a nil right ideal if each x ∈ I is nilpotent. That is, for each

x ∈ I there exists an integer n such that xn = 0. The nilradical of E is the ideal N (E)

that is defined as follows.

N (E) = {x ∈ E xE is a nilpotent right ideal in E}

= {x ∈ E Ex is a nilpotent left ideal in E}

Let x ∈ E. Since xn = 0 implies that 1 − x is a unit in E (show that one, reader),

1 − xy is a unit of E for each x ∈ N (E) and y ∈ E. Thus

N (E) ⊂ J (E).

The right R-module P is projective if for each surjection K
f

→ L → 0 of right

R-modules, each mapping g : M → L lifts to a mapping h : M → K such that

fh = g. The free R-module F for some cardinal c is projective, as is any direct

summand of F . In fact, every projective right R-module is a direct summand of a free

right R-module.
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1.2 Azumaya–Krull–Schmidt theorem 3

An idempotent is an element e ∈ E such that e2 = e. Often we will avoid the

term idempotent and just write e2 = e. If e2 = e ∈ E then eE is a cyclic projective

right E-module, and every cyclic projective has this form. Given a ring E and an

e2 = e ∈ E then

eEe = {exe x ∈ E}

is a ring with identity

1eEe = e.

Suppose S ⊂ R are rings. Then S is a unital subring of R if 1S = 1R. Although

eEe ⊂ E, eEe is not a unital subring of E unless e = 1. There are some relationships

between eEe and E.

Lemma 1.2. [7, Proposition 5.9] Let E be a ring and let e2 = e. Then

EndE(eE) = eEe.

The ring E is semi-perfect if

1. E/J (E) is semi-simple Artinian and

2. Given an ē2 = ē ∈ E/J (E) there is an e2 = e ∈ E such that ē = e + J (E). That

is, idempotents lift modulo J (E).

See [7, Chapter 7, §27] for a complete discussion of semi-perfect rings and their

modules. Fields, local rings, and Artinian rings are semi-perfect rings. Z is not semi-

perfect but the localization of Z at a prime p, Zp, is semi-perfect.

The next result follows from [7, Theorem 27.11].

Lemma 1.3. Let E be a semi-perfect ring and let P be a projective right E-module.

1. P is indecomposable iff EndE(P) is a local ring.

2. P is a direct sum of cyclic right E-modules with local endomorphism rings.

1.2 Azumaya–Krull–Schmidt theorem

Let G be a right R-module. The purpose of this section is to show that under some

conditions direct sum decompositions of G are well behaved, in a sense that we will

make precise below.

An indecomposable decomposition of G is a direct sum

G = G1 ⊕ · · · ⊕ Gt

for some integer t > 0 and indecomposable right R-modules G1, . . . , Gt .
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4 Preliminary results

We say that G has a unique decomposition if

1. G has an indecomposable decomposition G ∼= G1 ⊕ · · · ⊕ Gt , and

2. given another indecomposable decomposition G ∼= H1⊕ · · · ⊕Hs then s = t and

there is a permutation π of the subscripts {1, . . . , t} such that Gi
∼= Hπ(i) for each

i = 1, . . . , t.

In this case we call G1⊕· · ·⊕Gt the unique decomposition of G. Notice that the unique

decomposition of G is necessarily indecomposable. Professional mathematicians

believe that modules possessing a unique decomposition are rare.

The Azumaya–Krull–Schmidt theorem is the most referenced result on the subject

of the existence of a unique decomposition for a module. A proof can be found in [7].

The Azumaya–Krull–Schmidt theorem 1.4. [7, Theorem 12.6] Suppose that

G = G1 ⊕ · · · ⊕ Gt is an indecomposable decomposition of right R-modules such

that EndR(Gi) is a local ring for each i = 1, . . . , t.

1. The direct sum G = G1 ⊕ · · · ⊕ Gt is a unique decomposition of G,

2. If G = H ⊕ K then there is an I ⊂ {1, . . . , t} such that H ∼= ⊕i∈IGi.

3. G ∼= H ⊕ K ∼= H ⊕ N =⇒ K ∼= N for any right R-modules H, K, and N .

Thus direct sum decompositions of projective modules over semi-perfect rings are

unique.

1.3 The structure of rings

We present in this section a few results on the structure of a ring and its modules. The

first shows that if S is a commutative ring then an S-module M is 0 iff it is locally

zero. Thus a function is an epimorphism (or a monomorphism) iff it is locally an

epimorphism (or a monomorphism).

Theorem 1.5. [97, Theorem 3.80] Let S be a commutative ring and let M be a finitely

generated S-module. Then M = 0 iff MI = 0 for each maximal ideal I ⊂ S.

Corollary 1.6. [97, exercise 9.22] Let S be a commutative ring and let M be a finitely

presented S-module. Then M is projective (or a generator) iff MI is projective (or a

generator) for each maximal ideal I ⊂ S.

The next two results give a direct sum decomposition of a finite-dimensional

S-algebra, where S is a commutative ring.

Wedderburn’s theorem 1.7. [9, Theorem 14.1] Let A be an Artinian k-algebra over

some field k. Then there is a semi-simple k-subalgebra B of A such that A = B⊕N (A)

as k-vector spaces.

Theorem 1.8. [9, Beaumont–Pierce theorem, Theorem 14.2] Let E be a rtffr ring.

Then there is a semi-prime subring T of E such that T ⊕ N (E) has finite index in E

as groups.
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1.4 The Arnold–Lady theorem 5

We will need to count the number of isomorphism classes of right ideals in a ring R.

To do this we use a result due to Jordan and Zassenhaus.

Lemma 1.9. [94, Jordan–Zassenhaus lemma, Lemma 26.3] Let E be a semi-prime

rtffr ring. Then there are at most finitely many isomorphism classes of right ideals

of E.

It will be necessary to use the fact that each rtffr ring E is End(G) for some rtffr

group G. The results of Butler and Corner are most often referenced in this regard.

Butler’s theorem 1.10. [46, Theorem I.2.6] If E is an rtffr ring whose additive struc-

ture is a locally free abelian group then E ∼= End(G) for some group E ⊂ G ⊂ QE.

Theorem 1.11. [46, Theorem F.1.1] If E is an rtffr ring then there is an rtffr group

G of rank 2 · rank(E) such that E ∼= End(G).

Theorem 1.12. [56] If M is a countable reduced torsion-free left E-module and if

E = {q ∈ QE qM ⊂ M } then there is a short exact sequence

0 −→ M −→ G −→ QE ⊕ QE −→ 0

of left E-modules such that E ∼= End(G).

1.4 The Arnold–Lady theorem

Let G be a right R-module, let Mod-R denote the category of right R-modules, let

Mod-EndR(G) = the category of right EndR(G)-modules

and let

EndR(G)-Mod = the category of left EndR(G)-modules.

While characterizing module theoretic properties of G in terms of EndR(G) will

not be easy, the theorem of Arnold–Lady shows us that we can characterize direct

summands of G as projective EndR(G)-modules. With this tool we can characterize

properties surrounding the direct sum decompositions of G in terms of direct sum

decompositions of projective right EndR(G)-modules. Finitely generated projective

modules, at least on the surface, seem to be easier to work with than more general

modules.

Let

P(G) = {H G(c) ∼= H ⊕ K for some cardinal c > 0

and some right R-module K}.
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6 Preliminary results

We consider P(G) to be a full subcategory of the category Mod-R of right R-modules.

Similarly, given a ring E,

P(E) = category of projective right E-modules.

Define additive functors

TG(·) = · ⊗EndR(G) G HG(·) = HomR(G, ·)

HG(·) : Mod-R −−−→ Mod-EndR(G)

TG(·) : Mod-EndR(G) −−−→ Mod-R.

That is, HG(·) takes right R-modules to right EndR(G)-modules, and TG(·) takes

right EndR(G)-modules to right R-modules. Associated with HG(·) and TG(·) are the

natural transformations


 : TGHG(·) −−−→ 1

� : 1 −−−→ HGTG(·)

defined by


H (f ⊗ x) = f (x)

�M (x)(·) = · ⊗ x

for each f ∈ HomR(G, M ) and x ∈ G.

TG ◦ HG(·) = HomR(G, ·) ⊗EndR(G) G.

HG ◦ TG(·) = HomR(G, ·EndR(G)G).

A good exercise is to demonstrate that


TG(M ) ◦ TG(�M ) = 1TG(M )

for each right EndR(G)-module M .

One of the themes in this text is to identify categories of modules C and D such

that 
H and �M are isomorphisms for each H ∈ C and M ∈ D. The first such result

is the theorem of Arnold–Lady.
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1.4 The Arnold–Lady theorem 7

The Arnold–Lady theorem 1.13. [9, Theorem 7.21] If G is a self-small right

R-module then the functors

HG(·) : P(G) −−−→ P(EndR(G))

TG(·) : P(EndR(G)) −−−→ P(G)

are inverse category equivalences.

Proof: For the sake of the argument let E = EndR(G). Since 
 and � are natural

transformations 
H⊕K = 
H ⊕ 
K for right E-modules H and K , and �M⊕N =

�M ⊕ �N for right EndR(G)-modules M and N . Moreover, since G is self-small


G(I) = ⊕I
G . Thus given H ⊕K ∼= G(I) we can prove that 
H is an isomorphism if

we can prove that
G is an isomorphism. Similarly, to show that�P is an isomorphism

for each projective right E-module P, it suffices to show that �E is an isomorphism.

Consider the map

�E : E −−−→ HGTG(E).

Notice that HGTG(E) ∼= E with generator the map f : G −→ TG(E) such that

f (x) = 1 ⊗ x for each x ∈ G. Then �E(1) = f , which implies that �E is an

isomorphism.

Recall that


TG(E) ◦ TG(�E) = 1TG(E).

Since �E , and so TG(�E) are isomorphisms, it follows that 
TG(E) = 
G is an

isomorphism. Given our reductions the proof is complete.

Let

Po(G) = {H G(n) ∼= H ⊕ H ′ for some integer n > 0

and some right E-module H ′}.

Similarly, given a ring E,

Po(E) = the category of finitely generated projective

right E-modules.

Notice the missing self-small hypothesis in the next result.

Theorem 1.14. [46, Arnold–Lady Theorem] Let G be a right E-module. The functors

HG(·) : Po(G) −−−→ Po(EndR(G))

TG(·) : Po(EndR(G)) −−−→ Po(G)

are inverse category equivalences.
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8 Preliminary results

Example 1.15. Let G = ⊕pZp where p ranges over the primes in Z. Then End(G) =
∏

p Zp is a semi-hereditary ring and G is a projective (= flat) left End(G)-module.

Let I = ⊕pZp be the ideal in End(G). Then I is a projective ideal in End(G) that is

not finitely generated and such that TG(I) = IG = G. Inasmuchas I �= End(G) we

have shown that TG(·) : P(End(G)) −→ P(G) is not a category equivalence if the

self-small hypothesis is deleted from Theorem 1.13.

Example 1.16. Let G = Q(ℵo) and let E = End(G). Then G is a cyclic projective left

E-module so TG(I) ∼= IG for each right ideal I ⊂ End(G). If we let I = {f ∈ A f (G)

has finite dimension} then I �∼= End(G) while

TG(I) = IG = G = TG(End(G))

but I �= End(G). This is another example of the necessity of the self-small hypothesis

in Theorem 1.13 even though G has a rather restricted left End(G)-module structure.
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2

Class number of an abelian group

The study of direct sum decompositions of abelian groups is as old as the study of

abelian groups. In this chapter we study the direct sum decompositions of reduced

torsion-free finite rank abelian groups, and we show that the associated direct sum

problems are equivalent to a pair of deep problems in algebraic number theory.

2.1 Preliminaries

Let G be a reduced torsion-free finite-rank group. Following [46] we write rtffr to

abbreviate the string of hypotheses reduced torsion-free finite rank.

At all times in this text

E(G) = End(G)/N (End(G)).

We say that G is cocommutative if E(G) is a commutative ring. If G is a cocommuta-

tive strongly indecomposable rtffr group then E(G) is an rtffr Noetherian commutative

integral domain. For instance, it follows from a theorem of J. D. Reid’s that strongly

indecomposable rank two abelian groups are cocommutative. Any group whose

quasi-endomorphism ring is the Hamiltonian quaternions is not a cocommutative

group. One of the consequences of the work in this chapter is that cocommutative

groups occur naturally and often.

As in [46] we write locally isomorphic instead of nearly isomorphic, [9], or in the

same genus class, [94]. Thus, groups G and H are locally isomorphic if for each

integer n > 0 there are maps f : G −→ H and g : H −→ G and an integer m such

that m is relatively prime to n and fg = m1H and gf = m1G . Lattices M and N over

a semi-prime rtffr ring E are locally isomorphic if for each integer n > 0 there are

E-module maps f : M −→ N and g : N −→ M and an integer m such that m is

relatively prime to n and fg = m1N and gf = m1M . The class number of X , h(X ),

where X is either an rtffr group or a lattice, is the number of isomorphism classes of

those Y that are locally isomorphic to X .

An important result due to R. B. Warfield, Jr. is the following.

Warfield’s theorem 2.1. [9, Theorem 13.9] Let M and N be rtffr modules over an

rtffr ring E. Then M is locally isomorphic to N iff M n ∼= N n for some integer n > 0.
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10 Class number of an abelian group

Let Po(G) = {groups H H ⊕H ′ = Gm for some group H ′ and some integer m > 0}.

We say that G satisfies the power cancellation property if Gn ∼= H n for some group H

and integer n > 0 implies that G ∼= H . We say that G has a �-unique decomposition

if Gn has a unique direct sum decomposition for each integer n > 0. Furthermore, G

has internal cancellation if given H , K , L ∈ Po(G) such that H ⊕ K ∼= H ⊕ L then

K ∼= L.

Let E be an rtffr ring, (i.e., a ring whose additive structure (E, +) is an rtffr group).

The semi-prime rtffr ring E is integrally closed if given a ring E ⊂ E′ ⊂ QE such

that E′/E is finite then E = E′.

Let (X ) be the isomorphism class of X , and let

Ŵ(X ) = {(Y ) Y is locally isomorphic to X }.

Let Po(E) be the set of finitely generated projective right E-modules. The local

isomorphism class of X is denoted by [X ].

Lemma 2.2. Let P, Q ∈ Po(R), and suppose that J ⊂ J (R). Then P/PJ ∼= Q/QJ

iff P ∼= Q.

Proof: Since P and Q are projective right R-modules, the isomorphism P/PJ ∼=

Q/QJ lifts to a map φ : P −→ Q such that

ker φ ⊂ PJ and Q = φ(P) + QJ .

By Nakayama’s theorem 1.1, Q = φ(P). Since Q is a projective R-module,

P = U ⊕ ker φ where U ∼= Q. Furthermore, since ker φ ⊂ PJ , Nakayama’s the-

orem shows us that ker φ = 0, whence P ∼= Q. The converse is clear so the proof is

complete.

Theorem 2.3. [19, Proposition 2.12] Let R be an rtffr ring. The functor

AR(·) : Po(R) −→ Po(R/N (R))

defined by

AR(·) = · ⊗R R/N (R)

is full. Furthermore, AR(·) induces bijections of sets

1. {(P) P ∈ Po(R)} −→ {(W ) W ∈ Po(R/N (R))}, and

2. αR : {[P] P ∈ Po(R)} −→ {[W ] W ∈ Po(R/N (R))}.

Proof: Part 1 is true by [19, Proposition 2.12].

2. It is easily verified that αR is well defined.

Say W ∈ Po(R/N (R)). By part 1 there is a P ∈ Po(R) such that AR(P) ∼= W .

Thus αG is a surjection. Say αR[P] = αR[Q]. Then [P/PN (R)] = [Q/QN (R)].

By Warfield’s theorem 2.1, (P/PN (R))n ∼= (Q/QN (R))n for some integer n > 0.
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