Cambridge University Press 978-0-521-19921-6 — A Guide to Feedback Theory Joel L. Dawson Table of Contents <u>More Information</u>

Contents

	Prefac	e	<i>page</i> xi
	Acknow	wledgments	xiii
1	Linear	r Systems: What You Missed the First Time	1
1.1	Differential Equations Are a Natural Way to Express Time		
	Evolution		
	1.1.1	A First-Order System	1
	1.1.2	Higher-Order Systems	8
	1.1.3	For Those of You Bothered by the Numerical	
		Fitting in Section 1.1.1	12
1.2	Convenient Properties of Linear Differential Equations		
	1.2.1	Superposition!	13
	1.2.2	The Special Place of Exponentials	15
	1.2.3	But Why Complex Exponentials?	19
1.3	Frequency Domain Methods: A Beautiful Strategy		
	1.3.1	Fourier Series Representation of Periodic Signals	23
	1.3.2	The Fourier Transform and the Meaning of Integrals	26
	1.3.3	The Strategy	28
1.4	Impulses in Linear, Time-Invariant Systems		
	1.4.1	Why Impulses?	29
	1.4.2	The Fourier Transform and the Impulse Response	31
	1.4.3	The Fourier Transform of Differential Equations	33
1.5	The Unilateral Laplace Transform		
	1.5.1	Dynamic Interpretation of Poles	36
	1.5.2	The Geometric View of Poles and Zeros	40
	1.5.3	Initial and Final Value Theorems	44
	1.5.4	Inverting the Laplace Transform	46
1.6	Convolution and the Special Place of Exponentials		47

CAMBRIDGE

viii

Cambridge University Press 978-0-521-19921-6 — A Guide to Feedback Theory Joel L. Dawson Table of Contents <u>More Information</u>

1.7	Discrete-Time Formalism: Same Ideas, Different Notation			
	1.7.1	Difference Equations Are a <i>Really</i> Natural		
		Expression of Time Evolution	47	
	1.7.2	The Fourier Transform in Discrete Time	49	
	1.7.3	The Z-Transform, the Impulse Response, and		
		Convolution in Discrete Time	50	
1.8	Chapte	er Summary	50	
2	The B	asics of Feedback	52	
2.1	Filling	g a Glass with Water	52	
2.2	Open-	versus Closed-Loop Control in Block Diagrams	55	
2.3	Anatomy of a Feedback Loop			
	2.3.1	Block Diagrams	58	
	2.3.2	Sensors and Actuators	61	
	2.3.3	Loop Transmission, Negative Feedback, and		
		Stable Equilibria	66	
	2.3.4	Black's Formula	69	
2.4	Delay	Complicates Everything	70	
	2.4.1	Phase Response as a Frequency-Dependent Delay	71	
	2.4.2	The Fundamental Oscillation Condition	74	
	2.4.3	Poles in the Right-Half Plane Are Bad	75	
2.5	.5 Root Locus Techniques		77	
	2.5.1	The Problem We're Trying to Solve	79	
	2.5.2	The Amazing Things You Can Do with Two		
		Simple Conditions	82	
	2.5.3	Root Locus as a Design Tool	89	
	2.5.4	Root Locus in Discrete Time	99	
	2.5.5	A Useful Limit of DT	102	
2.6	Common Control Strategies			
	2.6.1	Gain Reduction	105	
	2.6.2	Dominant Poles and Integrators	107	
	2.6.3	Lag and Lead Compensators	108	
	2.6.4	PID Control	111	
2.7	Answers to Sample Problems		113	
3	The N	yquist Stability Criterion	116	
3.1	An Au	thoritative Test of Stability	116	
	3.1.1	True Delay and Root Locus	117	
3.2	A Not	e on Conformal Mapping	117	
3.3	Cauchy's Principle of the Argument			

Contents

CAMBRIDGE

Cambridge University Press 978-0-521-19921-6 — A Guide to Feedback Theory Joel L. Dawson Table of Contents <u>More Information</u>

		Contents	ix	
3.4	And Now the Nyquist Stability Criterion			
3.5	Bode Plots Help with Nyquist		126	
3.6	Nyquist Plot Examples			
3.7	Phase	Margin: Why You Never Really Learned Nyquist	137	
	3.7.1	The Stability Margin Concept	138	
	3.7.2	Phase Margin Definition	139	
	3.7.3	Phase Margin, Overshoot, Ringing, and		
		Magnitude Peaking	145	
3.8	Nyqui	st and Bode Techniques for DT Systems	146	
4	Some	Common Loose Ends	147	
4.1	"But in	n Control Theory, They Use Lots of Linear Algebra "	147	
4.2	The Problem of "Sinusoids Running Around Loops"			
4.3	4.3 Discrete-Time Control of Continuous-Time Systems		157	
	4.3.1	DT Processing of CT Signals	158	
	4.3.2	Don't Kid Around: Just Oversample	163	
	4.3.3	Relationship between z and s in Mixed-Signal Control	165	
	4.3.4	DT Compensators for CT Systems	169	
	4.3.5	The Other Useful Extreme: Slow Sampling	169	
	4.3.6	A Note on the Bias toward CT Methods	169	
	4.3.7	Sometimes, Real-Time Computer Control Is Hopeless	170	
5	Feedb	ack in the Real World	172	
5.1	Findin	g Loop Transmissions	172	
	5.1.1	Is the Sign Right? A Useful Check	174	
5.2	A Con	nmon Application: Howling Speakers and Microphones	175	
6	Concl	usion and Further Reading	181	
	Index		183	