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Linear Systems: What You

Missed the First Time

For an engineer, math is a language of unusual expressive power and concision.

The first time that you studied differential equations, however, chances are high

that this escaped you. That is natural. The purpose of this chapter is to help you

to get in touch with the meaning behind the math of linear, time-invariant (LTI)

systems.

1.1 Differential Equations Are a Natural Way

to Express Time Evolution

Feedback systems are dynamic: ultimately, we are interested in the evolution

of their state over time. Frequency-domain tools like the Laplace transform are

wonderful aids for analysis, but before revisiting those let’s examine the basic

differential equation. We will see that despite appearances, it is quite a natural

way to describe the time evolution of a dynamic system.

1.1.1 A First-Order System

Consider the RC circuit shown in Figure 1.1. The situation is that the capacitor

has a charge Q0 while the switch is open. The switch is then closed, which

connects a resistor of value R across the terminals of the capacitor. To

determine what happens next, we have at least two approaches. First, we

can argue on physical grounds that eventually the capacitor must completely

discharge, leaving the zero voltage across the capacitor. A sophisticated

observer might even point out that the capacitor will never fully discharge,

or alternatively, that a complete discharge would take an infinite amount of

time. A second approach is to not bother at all with “intuitive” reasoning and
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2 1 Linear Systems: What You Missed the First Time
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Figure 1.1 Discharging a capacitor through a resistor. The capacitor has an initial

charge Q0 = CV0 and begins to discharge when the switch is closed.

physical insight. We just write down the differential equation governing the

system and derive an expression for Q(t) in exquisite detail.

The problem with the first approach alone is that it does not always yield

the level of detail that we might require. While we can say that it will take

longer to discharge if the resistor R is bigger, we are helpless to say exactly

how long it will take the capacitor to lose 90 percent of its charge, for

example. The problem with the second approach alone is that without physical

insight, the student can never progress beyond solving little, well-packaged

problems with neat answers. If the engineer is ever to unleash their creativity

to invent, design, build, and discover new things, they will be powerfully aided

by understanding the yin-and-yang interplay between physical insight and

mathematical analysis.

The simple discharging of a capacitor is a great way to start understanding

this balance. Starting with the initial conditions, we have an open switch and

a capacitor with charge Q0. The physical meaning of capacitance is it tells us

how much charge we must supply if we are to establish a potential difference

between two conductors. The greater the capacitance, the more charge we

must supply to establish a given potential difference. This is beautifully and

succinctly captured by the constitutive law for capacitors, Q = CV . We know

therefore that before we throw the switch, the voltage across the capacitor

terminals is V0 = Q0/C.

When we do throw the switch, we have a new constitutive relation to satisfy,

namely, Ohm’s law. In the first instant after the switch is closed, the charge

flows through the resistor at a rate of I = V0/R = Q0/RC Coulombs per

second. But as soon as the first tiny bit of charge is removed from the capacitor,

the voltage across the capacitor goes down, causing the current to decrease,

which nevertheless continues to remove charge from the capacitor, and so on

and so forth. At this point we have a good physical understanding of what

is happening. How can we ever find out exactly how the charge decays with

time? The approach is to express our physical insight mathematically. Almost
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1.1 Differential Equations Are a Natural Way to Express Time Evolution 3

immediately, though, we run head-first into the problem of how to deal with the

progression of time. Things would be easier if time moved forward in discrete

chunks. We cannot help, for example, talking about the current flow “in the

first instant” after the switch is closed. Unfortunately, we know (or, at least,

have no reason to doubt) that time moves forward in a continuous progression.

Before we’ve written our first equation, then, we have a seemingly good reason

to despair.

The key insight is to realize that for any “continuous” variable, there is

a level of granularity beyond which a discretized representation is, for all

practical purposes, indistinguishable from a continuous one. We know that

water, for example, is composed of discrete water molecules, yet to our unaided

senses the granularity is so fine as to be indistinguishable from a continuous

liquid. The time variable is no different. Suppose that nature actually moved

in steps of one femtosecond (10−15 seconds). Would we be any the wiser,

even if using the fastest oscilloscopes available at the time of this writing?1

There might be other ways of telling if nature is secretly discretizing time,

but to an engineer with an oscilloscope, there is no practical difference

between a universe that discretizes time in one-femtosecond chunks and one

that moves forward continuously in time. This critical realization helps us to

move forward, and ultimately leads us to the shorthand that we now know as

differential equations.

Returning to our problem, we might consider breaking time up into tiny

chunks of duration �t . If we know the charge on the capacitor at time t , we

ask “What is the charge at time t +�t?” If we know the answer to this question

in general, and we know the answer at time t = 0 (or some other initial time),

then we know the answer for all time. So we write

Qc(t + �t) = Qc(t) − I (t)�t . (1.1)

That is, the charge at the next instant is equal to the charge at the current instant,

minus the charge that was bled off in one interval of time due to the current

at time t . What is value of �t? At this point we don’t bother about it. We

keep firmly in our mind that it is small enough so as to be indistinguishable

from continuous time, and don’t go back and pick a value of �t until we need

numerical answers. And what about the fact that in the truly continuous system,

I does not stay constant over any interval of time? It is true that this will

introduce an error. What is important is that we can make this error arbitrarily

small by making �t as small as we like. Remember, the goal is not to come up

1
The Agilent DSO91304A Infiniium oscilloscope samples at a “pedestrian” 40 GSamples/
second, or once every 25,000 femtoseconds.
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4 1 Linear Systems: What You Missed the First Time

with a model that is as accurate as nature is. That is impossible. We need only

be as accurate as we can conceivably measure.

Now, since voltage is what we actually measure, we recast Eq. 1.1 in terms

of the capacitor voltage

CVc(t + �t) = CVc(t) − I (t)�t . (1.2)

We seize on the fact that I (t) is linked to Vc through Ohm’s law: I (t) = Vc/R.

Substituting and gathering terms, we arrive at

Vc(t + �t) − Vc(t)

�t
+

1

RC
Vc(t) = 0. (1.3)

And now we appear to be stuck. There is no way to derive an expression for

Vc(t) that satisfies this equation. The best we can do is guess at a solution,

plug it in, and check to see if it “works” by resulting in an equation that is

self-consistent. What is a good guess?

The good news is that we needn’t guess blindly. On physical grounds, we

expect Vc(t) to decay with time; we expect that the rate of decay will slow with

time; we expect it to asymptotically approach zero. An inspired guess, drawn

from an admittedly large number of possibilities, is Vc(t) = V0a
n·�t . In this

solution, n is an integer index that steps us forward in time, �t is our time

increment, and a is a key parameter. If |a�t | < 1, we satisfy all of the condi-

tions we set forth. If we have chosen correctly, the equation will determine the

value of a�t unambiguously. This in turn validates our initial guess.

Plugging into Eq. 1.3, we have

V0a
(n+1)·�t − V0a

n·�t

�t
+

1

RC
V0a

n·�t = 0. (1.4)

A factor of V0a
n·�t appears in all terms. Dividing both sides of the equation

by V0a
n·�t and simplifying leads to

a�t = 1 −
�t

RC
. (1.5)

This is a critical juncture in our development. In some ways, once we have a�t

we are done. Equation 1.4 is a first-order polynomial in a�t , and in Eq. 1.5

we have an equation that gives us the roots of that polynomial. We’ll see

polynomials like this again when we look at discrete-time systems starting

in Section 1.7. For now, the only reason we’re continuing from here is that

this is not a discrete-time system, and so we must examine the implications of

allowing �t to become arbitrarily small. Continuing, Eq. 1.5 allows us to write

ln a =
1

�t
ln

(

1 −
�t

RC

)

. (1.6)
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1.1 Differential Equations Are a Natural Way to Express Time Evolution 5

Now, what do we mean when we insist that �t is small? It is actually

meaningless to insist that �t be “small” in an abstract sense. We must instead

specify its smallness in comparison to something. In this problem, suppose

that we say that �t is small compared to the quantity RC. Why does this make

sense? Rewriting Eq. 1.3 slightly, we have

Vc(t + �t) − Vc(t)

Vc(t)
= −

�t

RC
. (1.7)

Put into words, Eq. 1.7 says that �t ≪ RC is equivalent to saying that the

fractional change in Vc during any given time step is small. This is exactly

what we should hope for if we expect to better approximate a continuously

evolving system by shrinking the increment �t .

Now we employ a trick that is very common in all the disciplines of

engineering and science. On conditions such as �t ≪ RC, it is natural to

substitute for f (x0 + �x) a polynomial expansion:

f (x0 + �x) ≈ a0 + a1 · (�x) + a2 · (�x)2 + a3 · (�x)3 + · · · (1.8)

We like polynomial expansions because they are easy to realize in computa-

tional hardware: if you can multiply and add, you can work with polynomials.

This is depressingly untrue of transcendental functions like the logarithms,

exponentials, and trigonometric functions that surface with such persistence in

the analysis of linear systems. When you throw in the condition that x0 ≪ �x,

the good news just gets better in that you can get excellent numerical accuracy

despite truncating the polynomial expansion to a finite number of terms. In

fact, we often take x0 ≪ �x to mean that the original function can be well

approximated with only two terms:

f (x0 + �x) ≈ a0 + a1 · (�x). (1.9)

This happy circumstance is extremely convenient for hand analysis. You may

remember this trick as “linearization.”

But let’s not jump ahead. Let’s conservatively “guess” that for our purposes

the logarithm can be adequately captured by a third-order polynomial expan-

sion. We’ll then check later to see if it introduces unacceptable numerical error.

There are many techniques for fitting polynomials. For the function ln(1+�x),

the author chose for data points �x ∈ [10−4,10−3.5,10−3,10−2.5,10−2],

which are all conspicuously small compared to 1. An elementary least-squares

fit2 results in the polynomial substitution for ln(1 + �x)

2
For the interested reader, an excellent treatment of least-squares fits can be found in Gilbert
Strang’s Introduction to Linear Algebra, 4th ed. (Wellesley, MA: Wellesley-Cambridge Press,
2009).
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6 1 Linear Systems: What You Missed the First Time

≈ 1.2480 × 10−12 + 1.0000 · �x − 0.5000 · (�x)2 + 0.3298 · (�x)3

≈ 1.0000 · �x − 0.5000 · (�x)2 + 0.3298 · (�x)3, (1.10)

which we claim we can use with insignificant numerical error. It is instructive

to do a few calculations comparing a true evaluation of ln(1 + �x) with the

polynomial substitute and confirming for yourself the values of �x for which

this is really okay.

Armed with this new polynomial, we return to our original problem

(Eq. 1.6) and write

ln a =
1

�t

(

−
�t

RC
− 0.5

(

�t

RC

)2

− 0.3298

(

�t

RC

)3
)

. (1.11)

Now the full implications of �t ≪ RC can be made clear. Since �t ≪ RC

is the same thing as saying �t/RC ≪ 1, we see that the terms of �t/RC of

second order and higher in Eq. 1.11 diminish rapidly as we make �t smaller.

We can thus go even further in our approximation and neglect these terms,

keeping firmly in mind that if the error this introduces bothers us, we can

always make �t smaller and smaller until the error does not bother us. Then

we are left with

a = e−1/RC, (1.12)

which means, at long last, that the capacitor voltage evolves as

Vc(n · �t) = V0e
−n·�t/RC, (1.13)

and we can finally write

Vc(t) = V0e
−t/RC . (1.14)

This is the answer that we were expecting all along. What is important

is how we got here. Based on physical reasoning, we came up with a

discrete-time model for the system’s behavior, and showed that solutions to

the difference equations of this sort (see Eq. 1.4) have the form (a�t )n. We

then solved for a�t , and finally explored the consequences of allowing �t to

become arbitrarily small compared to RC.

Mathematicians have an expression for our last step. They might say we

“took the limit of Eq. 1.3 as �t goes to zero.” That is, we might have written

Eq. 1.3 as

lim
�t→0

(

Vc(t + �t) − Vc(t)

�t
+

1

RC
Vc(t) = 0

)

. (1.15)
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1.1 Differential Equations Are a Natural Way to Express Time Evolution 7

Of course, we now can appreciate that �t does not go all the way to zero.

It just gets arbitrarily small, such that the discrete “chunking” of time is

indistinguishable from a continuous flow of time in whatever context is

appropriate. Well, it turns out that the limit

lim
�t→0

Vc(t + �t) − Vc(t)

�t
(1.16)

occurs so often in the mathematics of continuous variables that we give

ourselves an abbreviation, or a shorthand:

lim
�t→0

Vc(t + �t) − Vc(t)

�t
=

dVc(t)

dt
. (1.17)

This shorthand is called the derivative, as in “the derivative of Vc with respect

to t .” You may or may not remember from when you first learned derivatives

that Eq. 1.16 was the formal definition given to you. We may therefore rewrite

Eq. 1.3 using the shorthand

dVc(t)

dt
+

1

RC
Vc(t) = 0. (1.18)

This is just a standard, first-order differential equation. The standard procedure

here is to “guess” the solution Aest . Plugging this solution into Eq. 1.18 results

in s being determined as −1/RC, and then we choose A to be V0 in order to

satisfy the initial conditions. The point of all this is that Eq. 1.18 does not

spring out of a vacuum. Starting with Eq. 1.1, we took a very common-sense

approach to solving a dynamical problem whose physics we understood pretty

well. The approach represented by Eq. 1.18 takes for granted all of the insight

that we gained by plodding through our discrete-time development. This is

completely appropriate, as once the basics are understood it is important to

streamline our methods as practical matter.

On a final note, we may interpret Eq. 1.18 in another way that makes its

meaning jump off the page. We can write it as

dVc(t)

dt
= −

1

RC
Vc(t). (1.19)

Putting this equation into words, we might say “The rate of change of the

voltage across the capacitor is proportional to the voltage across it at any given

time, and inversely proportional to the value of the RC product. That rate of

change has the opposite sign of the voltage across the capacitor at a given

time, so the magnitude of the voltage is always decreasing. The system comes

to rest, which is to say, the rate of change of the capacitor voltage goes to

zero, only when the voltage across the capacitor itself is zero.” We see that this

www.cambridge.org/9780521199216
www.cambridge.org


Cambridge University Press
978-0-521-19921-6 — A Guide to Feedback Theory
Joel L. Dawson 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 1 Linear Systems: What You Missed the First Time

differential equation is indeed a very natural way to describe the time evolution

of an RC circuit.

1.1.2 Higher-Order Systems

It turns out that the discretized development of Section 1.1.1 is readily

extensible to higher-order systems. The first thing to do is to figure out the

equivalent of Eq. 1.17 for higher-order derivatives. It is helpful to introduce

additional notation; we often write the first derivative of a function f (t) with

respect to time as f ′(t). That is,

f ′(t) = lim
�t→0

f (t + �t) − f (t)

�t
=

df (t)

dt
. (1.20)

Now we have a function f ′(t). We might ask, what is the time rate of change of

this new function? You may remember that the answer is the second derivative

of f with respect to t :

f ′′(t) =
d

dt

df (t)

dt
=

d2f

dt2
. (1.21)

To figure out the equivalent of Eq. 1.17, we simply find the derivative of f ′(t),

f ′′(t) = lim
�t→0

f ′(t + �t) − f ′(t)

�t
, (1.22)

and substitute the definition of f ′(t) from Eq. 1.20. Doing so yields

f ′′(t) = lim
�t→0

f (t + 2 · �t) − 2f (t + �t) + f (t)

(�t)2
. (1.23)

Repeating this procedure over and over again, we can get whatever order

derivative we wish.

Higher-order derivatives come up quickly as we go beyond the complexity

of the RC circuit in Figure 1.1. For example, consider the LC circuit in

Figure 1.2. Proceeding in the same spirit that led to Eq. 1.1, we can write

VcVc

ILIL

LL CC

++

−−

Figure 1.2 A simple LC circuit. The capacitor has an initial charge Q0 = CV0,

and current begins to flow when the switch is closed at time t = 0.
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1.1 Differential Equations Are a Natural Way to Express Time Evolution 9

CVc(t + �t) = CVc(t) − IL(t)�t (1.24)

IL(t + �t) = IL(t) +
1

L
Vc(t)�t .

One way to proceed from here is to solve the first equation for IL(t) in terms

of Vc(t) and Vc(t + �t) , and then substitute for IL(t) and IL(t + �t) in the

second equation. Doing so causes our second-order derivative to appear right

away:

Vc(t + 2 · �t) − 2Vc(t + �t) + Vc(t)

(�t)2
+

1

LC
Vc(t) = 0. (1.25)

Now we proceed as before. We “guess” that Vc(t) has the form V0a
n·�t , and

are led to the quadratic characteristic equation in a�t :

(a�t )2 − 2(a�t ) + 1 +
(�t)2

LC
= 0. (1.26)

The quadratic formula readily provides us with possible values of a�t :

a�t =
2 ±

√

4 − 4
(

1 + (�t)2

LC

)

2
= 1 ± j

�t
√

LC
. (1.27)

As before, we take the log of both sides,

ln a =
1

�t
ln

(

1 ± j
�t

√
LC

)

, (1.28)

only to encounter the log of a complex number. Dealing with this requires that

we dust off a few important facts about complex numbers. The first is Euler’s

relation, which is

ejθ = cos θ + j sin θ . (1.29)

The second fact is that any complex number c + jd can be written in the polar

form rejθ , where

r =
√

c2 + d2 (1.30)

and

θ = arctan

(

d

c

)

. (1.31)

The logarithm of this polar form is immediately apparent as

ln(rejθ ) = ln r + jθ . (1.32)
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10 1 Linear Systems: What You Missed the First Time

Putting all of these facts together, we are free once again to pursue our original

aim, which was solving for a. The argument of the logarithm in Eq. 1.28

becomes rejθ , where

r =
(

1 +
(�t)2

LC

)1/2

(1.33)

and

θ = arctan

(

�t
√

LC

)

. (1.34)

So now Eq. 1.28 becomes

ln a =
1

2 · �t
ln

(

1 +
(�t)2

LC

)

+
j

�t
arctan

(

�t
√

LC

)

. (1.35)

We now once again take a look at the consequences of a small �t , this

time noting that its smallness compared to
√

LC is what counts. With the

logarithmic term on the right side of Eq. 1.35, we do the same approximation

that we did in Eq. 1.45. For the arctan term, we note that for x ≪ 1, it can be

shown that arctan x ≈ x. These approximations reduce Eq. 1.35 to

ln a ≈
1

2

�t

LC
+

j
√

LC
. (1.36)

Here we notice one more thing: arbitrarily small �t compared to
√

LC makes

for one further simplification, which is that

ln a ≈
j

√
LC

. (1.37)

At the end of it all, we find that a�t = e±j ·�t/
√

LC , and therefore we can write

the most general possible solution for Vc as

Vc(t) = Ae+j t/
√

LC + Be−j t/
√

LC . (1.38)

In actual applications, A and B are determined by the initial conditions for Vc

and IL. To see this, we can write the general solution for IL using Eq. 1.24.

Now that we are confident of its meaning, we freely employ the shorthand for

the derivative and rewrite Eq. 1.24 as

IL(t) = −C
dVc

dt
= −

j
√

LC
Ae+j t/

√
LC +

j
√

LC
Be−j t/

√
LC . (1.39)
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