# Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xxiii</td>
</tr>
<tr>
<td>Principal Roman Symbols</td>
<td>xxvii</td>
</tr>
<tr>
<td>Principal Greek Symbols</td>
<td>xxxi</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xxxiii</td>
</tr>
</tbody>
</table>

1 Overview

1.1 Introduction | 1
1.2 Vacuum Electronic and Solid-State Technologies | 2
1.3 Principles of Operation | 4
1.3.1 Geometry | 5
1.3.2 Electron Dynamics | 5
1.3.3 Modulation of the Electron Current | 7
1.3.4 Amplification, Gain, and Linearity | 7
1.3.5 Power Output and Efficiency | 9
1.3.6 Bandwidth | 11
1.3.7 The Electromagnetic Structure | 11
1.3.8 Coupled-Mode Theory | 12
1.3.9 Classification of Vacuum Tubes | 17
1.4 Applications of Vacuum Tubes | 17
1.5 The Statement of Requirements | 19
1.6 Signals and Noise | 20
1.6.1 Noise | 22
1.6.2 Analogue Modulation | 23
1.6.3 Digital Modulation | 26
1.6.4 Multiplexing | 28
1.7 Engineering Design | 32
1.7.1 Dimensionless Parameters and Scaling | 33
1.7.2 Modelling | 36
## Contents

### 2 Waveguides

- **2.1 Introduction**
- **2.2 Waveguide Theory**
  - 2.2.1 The Transverse Electric and Magnetic Mode
  - 2.2.2 Transverse Electric Modes
  - 2.2.3 Transverse Magnetic Modes
- **2.3 Practical Waveguides**
  - 2.3.1 Coaxial Lines
  - 2.3.2 Rectangular Waveguides
  - 2.3.3 Ridged Waveguides
  - 2.3.4 Circular Waveguides
  - 2.3.5 Summary of Waveguide Impedances
- **2.4 Waveguide Discontinuities**
  - 2.4.1 Height Step in a Rectangular Waveguide
  - 2.4.2 Capacitive Iris in a Rectangular Waveguide
  - 2.4.3 Inductive Iris in a Rectangular Waveguide
- **2.5 Matching Techniques**
  - 2.5.1 Stub Matching
  - 2.5.2 Broad-band Matching
  - 2.5.3 Stepped Impedance Transformers
- **2.6 Coupling without Change of Mode**
- **2.7 Coupling with Change of Mode**
- **2.8 Windows**
  - 2.8.1 Windows in Coaxial Lines
  - 2.8.2 Windows in Rectangular Waveguide

### 3 Resonators

- **3.1 Introduction**
- **3.2 Resonant Circuits**
  - 3.2.1 The Properties of Resonant Circuits
  - 3.2.2 External Loading of Resonant Circuits
  - 3.2.3 Excitation of Resonant Circuits
  - 3.2.4 Coupled Resonators
- **3.3 Pill-Box Cavity Resonators**
  - 3.3.1 Effects of Surface Roughness
  - 3.3.2 Higher-Order Modes
- **3.4 Rectangular Cavity Resonators**
- **3.5 Re-entrant Cavities**
  - 3.5.1 Method of Moments Model of Re-entrant Cavities
  - 3.5.2 Fujisawa’s Model of Re-entrant Cavities
  - 3.5.3 The Interaction Field
  - 3.5.4 Practical Re-entrant Cavities
## Contents

- 3.6 External Coupling to Cavities  
  - 3.6.1 Loop Coupling  
  - 3.6.2 Iris Coupling  
  - 3.7 Measurement of Cavity Parameters

- 4 Slow-Wave Structures  
  - 4.1 Introduction  
  - 4.1.1 Uniform Slow-Wave Structures  
  - 4.1.2 Periodic Slow-Wave Structures  
  - 4.1.3 Space Harmonics  
  - 4.2 Planar Slow-Wave Structures  
  - 4.2.1 Ladder Line  
  - 4.2.2 Meander Line  
  - 4.2.3 Inter-digital Line  
  - 4.3 Helix Slow-Wave Structures  
  - 4.3.1 The Sheath Helix Model  
  - 4.3.2 Dispersion Shaping  
  - 4.3.3 Tape Helix Slow-Wave Structures  
  - 4.3.4 Equivalent Circuit of Helix Slow-Wave Structures  
  - 4.3.5 Couplers and Attenuators  
  - 4.4 Ring-Bar and Ring-Loop Structures  
  - 4.5 Waveguide Slow-Wave Structures  
  - 4.5.1 The Folded Waveguide Structure  
  - 4.5.2 Helical Waveguides  
  - 4.6 Coupled-Cavity Slow-Wave Structures  
  - 4.6.1 Space Harmonic Structures  
  - 4.6.2 The Cloverleaf Structure  
  - 4.6.3 The Centipede Structure  
  - 4.6.4 Termination of Coupled-Cavity Slow-Wave Structures  
  - 4.7 Measurement of the Properties of Slow-Wave Structures  
  - 4.7.1 Measurements on Coupled-Cavity Slow-Wave Structures  
  - 4.7.2 Measurements on Helix Slow-Wave Structures

- 5 Thermionic Diodes  
  - 5.1 Introduction  
  - 5.1.1 Dimensional Analysis of Thermionic Diodes  
  - 5.1.2 Current Limitation  
  - 5.2 The Planar Space-Charge Limited Diode  
  - 5.3 The Planar Diode Including the Effects of Thermal Velocities  
  - 5.3.1 Electron Flow between the Potential Minimum and the Anode  
  - 5.3.2 Electron Flow between the Cathode and the Potential Minimum  
  - 5.3.3 Numerical Evaluation
Contents

5.4 The Planar Diode Including the Effects of Relativity 204
5.5 The Cylindrical Space-Charge Limited Diode 206
5.6 The Spherical Space-Charge Limited Diode 209
5.7 Transit-Time Effects in a Planar Diode 211
5.8 Injection of Electrons into a Planar Diode 214
5.9 Diodes with Two-Dimensional Flow of Current 219

6 Triodes and Tetrodes 224
6.1 Introduction 224
6.2 Electrostatic Models of Triodes 225
6.3 Penetration Factor in a Planar Triode 228
   6.3.1 A Triode with Uniform Electric Field on the Cathode 230
   6.3.2 A Triode with Non-Uniform Electric Field on the Cathode 232
   6.3.3 Calculation of Penetration Factors Using Numerical Methods 234
6.4 Static Characteristics of Triodes 234
   6.4.1 Grid Current 238
   6.4.2 Triodes with Island Formation 240
6.5 Electrostatic Models of Tetrodes 242
6.6 Penetration Factors in Tetrodes 243
6.7 Static Characteristics of Tetrodes 245
   6.7.1 Grid Currents in Tetrodes 246
   6.7.2 Effect of Space-Charge between the Screen Grid and the Anode 246

7 Linear Electron Beams 250
7.1 Introduction 250
7.2 Cylindrical Electron Beams 250
7.3 Electron Optics without Space-Charge 252
   7.3.1 The Paraxial Ray Equation of Electrostatic Electron Optics 253
   7.3.2 Thin Electrostatic Lenses 254
   7.3.3 Busch’s Theorem 256
   7.3.4 Magnetostatic Electron Optics without Space Charge 257
   7.3.5 Thin Magnetic Lenses 258
7.4 Electron Optics with Space-Charge 259
   7.4.1 Solenoid Focusing 260
   7.4.2 Scalloping 262
   7.4.3 Beam Stiffness 263
7.5 Beam Spreading 266
   7.5.1 The Universal Beam-Spreading Curve 266
   7.5.2 Spreading of Rotating Beams 268
Table of Contents

7.6 Periodic Focusing 269
  7.6.1 Periodic Permanent Magnet (PPM) Focusing 270
  7.6.2 Practical PPM Focusing Systems 276
  7.6.3 Periodic Electrostatic Focusing 277
7.7 Other Forms of Linear Electron Beam 280
  7.7.1 Sheet Electron Beams 281
  7.7.2 Annular Electron Beams 281
7.8 Imperfections in Electron Beams 281
  7.8.1 Thermal Velocities 282
  7.8.2 Trapped Ions 282

8 Electron Flow in Crossed Fields 287
  8.1 Introduction 287
  8.2 Crossed-Field Electron Flow in Planar Geometry 288
    8.2.1 Electron Motion without Space-Charge 289
    8.2.2 Injected Beam with Space-Charge 292
  8.3 The Planar Magnetron Diode 294
    8.3.1 The Diode Is Conducting 294
    8.3.2 The Diode Is Cut-Off 298
  8.4 Crossed-Field Electron Flow in Cylindrical Geometry 301
    8.4.1 Electron Motion without Space-Charge 301
    8.4.2 Injected Beam with Space-Charge 303
  8.5 The Cylindrical Magnetron Diode 305
  8.6 Experimental Behaviour of Magnetron Diodes 308
  8.7 The Magnetron Problem 314

9 Electron Guns 317
  9.1 Introduction 317
  9.2 The Pierce Electron Gun 318
    9.2.1 Electrostatic Theory of the Pierce Electron Gun 318
    9.2.2 The Focus Electrode and Anode Nose 322
    9.2.3 Improved Model of the Anode Lens 324
    9.2.4 The Effects of Thermal Velocities 328
    9.2.5 Electrostatic Design of a Pierce Electron Gun 331
  9.3 Magnetic Field Design for a Pierce Electron Gun 333
    9.3.1 Solenoid Focusing 333
    9.3.2 PPM Focusing 338
  9.4 Other Pierce Guns 340
    9.4.1 Guns for Sheet Beams 340
    9.4.2 Guns for Hollow Beams 340
  9.5 Beam Control Electrodes 341
    9.5.1 Modulating Anode and Control Focus Electrode 341
    9.5.2 Intercepting Control Grid 342
    9.5.3 Non-Intercepting Control Grid 343
# Contents

9.6 Crossed-Field Electron Guns 344  
9.6.1 Kino Gun 345  
9.6.2 Magnetron Injection Gun 346  

10 Electron Collectors and Cooling 352  
10.1 Introduction 352  
10.2 Linear Beam Tube Collectors 353  
10.3 Collector Depression 358  
10.3.1 Multi-Element Depressed Collectors 360  
10.3.2 Non-Ideal Multi-Element Depressed Collectors 363  
10.4 Design of Multi-Element Depressed Collectors 366  
10.4.1 Suppression of Secondary Electrons 369  
10.4.2 Reconditioning the Spent Electron Beam 370  
10.5 Cooling 371  
10.5.1 Conduction Cooling 371  
10.5.2 Air Cooling 371  
10.5.3 Liquid Cooling 372  
10.5.4 Vapour Phase Cooling 372  

11 Beam-Wave Interaction 375  
11.1 Introduction 375  
11.2 Ballistic Theory of Interaction with a Gap 376  
11.2.1 Beam Modulation by a Gridded Gap 376  
11.2.2 Ballistic Electron Bunching 378  
11.2.3 Beam Loading of a Gridded Gap 380  
11.2.4 Beam Modulation by a Gridless Gap 382  
11.3 Space Charge Waves on Linear Electron Beams 385  
11.3.1 Effect of Radial Boundaries 388  
11.3.2 Induced Current 390  
11.3.3 Transmission Line Representation of Space-Charge Waves 394  
11.3.4 Space-Charge Waves on Non-Ideal Electron Beams 396  
11.3.5 Higher-Order Modes 396  
11.3.6 Cyclotron Waves 397  
11.4 Space-Charge Wave Theory of the Interaction between a Beam and a Gap 397  
11.4.1 Current Induced in a Gap by Space-Charge Waves 399  
11.4.2 Beam Loading of a Gridless Gap 400  
11.4.3 Beam Interaction with a Passive Gridless Gap 402  
11.5 Continuous Interaction with a Slow-Wave Structure 404  
11.6 Discrete Interaction with a Slow-Wave Structure 411  
11.7 Backward-Wave Interactions 415
## Contents

11.8 Large-Signal Modelling of Beam-Wave Interactions 417
   11.8.1 Large-Signal Model of the Beam–Gap Interaction 419
   11.8.2 Modulation of an Electron Beam by a Gap 422
   11.8.3 Current Induced in a Passive Gap by a Modulated Beam 423
   11.8.4 Power Transfer in an Output Gap 426

12 Grided Tubes 433
   12.1 Introduction 433
      12.1.1 Grided Tube Amplifiers 433
      12.1.2 Classes of Amplification 434
   12.2 Triodes 439
      12.2.1 Case Study: The ML-5681 Triode 441
   12.3 Tetrodes 443
      12.3.1 Case Study: The RS 2058 Tetrode 444
   12.4 Design of Triodes and Tetrodes 448
   12.5 Design of Triode and Tetrode Amplifiers 451
      12.5.1 Practical Details 454
   12.6 Inductive Output Tubes (IOTs) 455
      12.6.1 Bunch Formation 456
      12.6.2 Space-Charge Debunching 457
      12.6.3 Power Transfer in the Output Gap 458
      12.6.4 IOT Collectors 459
      12.6.5 Case Study: The 116LS IOT 460

13 Klystrons 466
   13.1 Introduction 466
   13.2 Small-Signal Klystron Theory 468
      13.2.1 Input Cavity 469
      13.2.2 Idler Cavities 470
      13.2.3 Output Cavity 471
      13.2.4 Simplified Small-Signal Model 474
      13.2.5 Overall Performance 475
   13.3 Large-Signal Behaviour of Klystrons 475
      13.3.1 Klystron Sections 477
      13.3.2 Initial Bunching Section 478
      13.3.3 Final Bunching Section 479
      13.3.4 Output Section 481
      13.3.5 Output Coupling 483
      13.3.6 Theoretical Limits to Efficiency 485
      13.3.7 Electron Collection 488
      13.3.8 Terminal Characteristics 490
# Microwave and RF Vacuum Electronic Power Sources

## Contents

<table>
<thead>
<tr>
<th>13.4 Klystron Design</th>
<th>491</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4.1 Broad-band Klystrons</td>
<td>493</td>
</tr>
<tr>
<td>13.4.2 High-Efficiency Klystrons</td>
<td>494</td>
</tr>
<tr>
<td>13.4.3 Case Study: The SLAC 5045 Klystron</td>
<td>497</td>
</tr>
<tr>
<td>13.5 Other Klystrons</td>
<td>499</td>
</tr>
<tr>
<td>13.5.1 Multiple-Beam Klystrons</td>
<td>500</td>
</tr>
<tr>
<td>13.5.2 Sheet Beam Klystrons</td>
<td>502</td>
</tr>
<tr>
<td><strong>14 Travelling-Wave Tubes</strong></td>
<td>507</td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>507</td>
</tr>
<tr>
<td>14.1.1 Helix and Helix-Derived TWTs</td>
<td>508</td>
</tr>
<tr>
<td>14.1.2 Coupled-Cavity TWTs</td>
<td>509</td>
</tr>
<tr>
<td>14.1.3 Energy Conversion in a TWT</td>
<td>510</td>
</tr>
<tr>
<td>14.2 Small-Signal Theory</td>
<td>513</td>
</tr>
<tr>
<td>14.2.1 Small-Signal Theory of Helix TWTs</td>
<td>514</td>
</tr>
<tr>
<td>14.2.2 Small-Signal Theory of Coupled-Cavity TWTs</td>
<td>520</td>
</tr>
<tr>
<td>14.3 Large Signal Effects</td>
<td>521</td>
</tr>
<tr>
<td>14.3.1 Dimensionless Parameters</td>
<td>526</td>
</tr>
<tr>
<td>14.3.2 Dependence of Efficiency on Normalised Parameters</td>
<td>528</td>
</tr>
<tr>
<td>14.3.3 Dependence of Efficiency on the Operating Point</td>
<td>531</td>
</tr>
<tr>
<td>14.3.4 Effect of a Sever</td>
<td>534</td>
</tr>
<tr>
<td>14.3.5 Harmonics</td>
<td>537</td>
</tr>
<tr>
<td>14.3.6 Transfer Characteristics</td>
<td>538</td>
</tr>
<tr>
<td>14.3.7 Tapers</td>
<td>542</td>
</tr>
<tr>
<td>14.3.8 Stability</td>
<td>543</td>
</tr>
<tr>
<td>14.4 TWT Design</td>
<td>544</td>
</tr>
<tr>
<td>14.4.1 Case Study: An Octave Bandwidth Helix TWT</td>
<td>545</td>
</tr>
<tr>
<td>14.4.2 Millimetre-Wave Helix TWTs</td>
<td>549</td>
</tr>
<tr>
<td>14.4.3 High Efficiency Helix TWTs</td>
<td>550</td>
</tr>
<tr>
<td>14.4.4 Ultra-Broad-band TWTs</td>
<td>553</td>
</tr>
<tr>
<td>14.4.5 Coupled-Cavity TWTs</td>
<td>555</td>
</tr>
<tr>
<td>14.4.6 Hybrid Tubes</td>
<td>556</td>
</tr>
<tr>
<td><strong>15 Magnetrons</strong></td>
<td>565</td>
</tr>
<tr>
<td>15.1 Introduction</td>
<td>565</td>
</tr>
<tr>
<td>15.2 Basic Principles</td>
<td>566</td>
</tr>
<tr>
<td>15.2.1 Hub Model</td>
<td>569</td>
</tr>
<tr>
<td>15.2.2 Interaction Field</td>
<td>569</td>
</tr>
<tr>
<td>15.2.3 Threshold Condition for Oscillations</td>
<td>573</td>
</tr>
<tr>
<td>15.2.4 Electronic Efficiency</td>
<td>580</td>
</tr>
<tr>
<td>15.3 Magnetron Anodes</td>
<td>580</td>
</tr>
<tr>
<td>15.3.1 Strapped Anodes</td>
<td>587</td>
</tr>
<tr>
<td>15.3.2 Rising Sun Anodes</td>
<td>590</td>
</tr>
</tbody>
</table>
## Table of Contents

15.3.3 Coaxial Anodes  
15.3.4 Long Anodes  
15.4 Magnetron Properties  
  15.4.1 The Performance Chart  
  15.4.2 Frequency Pushing  
  15.4.3 Frequency Pulling  
  15.4.4 Spectrum  
  15.4.5 Mode Selection, Priming, and Locking  
15.5 Particle in Cell Magnetron Models  
15.6 Simple Magnetron Models  
  15.6.1 The Space-Charge Hub  
  15.6.2 The Rigid Spoke Model  
  15.6.3 Guiding Centre Orbits  
  15.6.4 Electron Trajectory Model  
  15.6.5 Calculation of the Output Power  
  15.6.6 The Rieke Diagram  
  15.6.7 Frequency Pushing  
15.7 Magnetron Design  
  15.7.1 Dimensionless Parameters  
  15.7.2 Design Parameters  
  15.7.3 Design Case Study  
  15.7.4 Other Considerations  

16 Crossed-Field Amplifiers  
16.1 Introduction  
  16.1.1 Emitting Cathode CFAs  
  16.1.2 Injected Beam CFAs  
16.2 CFA Construction  
  16.2.1 Slow-Wave Structures  
  16.2.2 Cathodes  
  16.2.3 Cathode-Driven CFAs  
16.3 Basic Principles  
16.4 CFA Characteristics  
  16.4.1 Performance Chart  
  16.4.2 Modulation  
  16.4.3 Transfer Characteristics  
  16.4.4 Signal Growth and Anode Dissipation  
16.5 Theoretical Models of CFAs  
  16.5.1 PIC Codes  
  16.5.2 Soliton Theory  
  16.5.3 Guiding Centre Theory  
  16.5.4 Non-Linear Fluid Mechanics  
  16.5.5 Rigid Spoke Model  
16.6 CFA Design
## Contents

### 17 Fast-Wave Devices

17.1 Introduction 659
17.2 Electron Cyclotron Masers 660
   17.2.1 Small-Signal Theory of ECM Interactions 664
17.3 Gyrotron Oscillators 668
   17.3.1 Large-Signal Interaction Model 671
   17.3.2 Case Study: A 140 GHz, 1 MW CW, Gyrotron 677
   17.3.3 Design of Gyrotron Oscillators 679
   17.3.4 Cyclotron Auto-Resonance Masers 683
   17.3.5 Tuneable Gyrotrons 683
17.4 Gyro-Amplifiers 684
17.5 Peniotrons 685
17.6 Ubitrons (Free Electron Lasers) 686

### 18 Emission and Breakdown Phenomena

18.1 Introduction 694
18.2 Emission of Electrons from Metal Surfaces 694
   18.2.1 Thermionic Emission 696
   18.2.2 Field-Enhanced Emission (the Schottky Effect) 697
   18.2.3 Field Emission 698
   18.2.4 Photo-Electric Emission 699
18.3 Secondary Electron Emission 700
   18.3.1 Modelling Secondary Electron Emission 704
18.4 X-ray Emission 706
18.5 Thermionic Cathodes 708
   18.5.1 Metal Emitters 709
   18.5.2 Oxide Cathodes 710
   18.5.3 Dispenser Cathodes 710
18.6 Field Emission Cathodes 712
18.7 Voltage Breakdown 713
   18.7.1 Voltage Breakdown in Vacuum 713
   18.7.2 Voltage Breakdown in Gases 715
   18.7.3 Voltage Breakdown on Insulators 720
18.8 Multipactor Discharges 721
   18.8.1 Theory of Multipactor Discharges between Parallel Plates 723
   18.8.2 Multipactor Discharges between Coaxial Cylinders 727
   18.8.3 Multipactor Discharges in Crossed Fields 727
   18.8.4 Modelling Multipactor Discharges 727

### 19 Magnets

19.1 Introduction 735
19.2 Review of Theory 736
   19.2.1 Ferromagnetism 737
   19.2.2 Conduction of Magnetic Flux by Soft Magnetic Materials 738
## 19.3 Magnetic Circuits
- **19.3.1 Circuits Including Permanent Magnets**

## 19.4 Magnetic Materials
- **19.4.1 Soft Magnetic Materials**
- **19.4.2 Permanent Magnet Materials**

## 19.5 Coil Dominated Magnets
- **19.5.1 Arrays of Coils**
- **19.5.2 Solenoids**

## 19.6 Iron Dominated Magnets

## 19.7 Permanent Magnet Design
- **19.7.1 Permanent Magnets for Magnetrons and CFAs**
- **19.7.2 Permanent Magnets for Linear Beam Tubes**
- **19.7.3 Periodic Permanent Magnet (PPM) Systems**

## 20 System Integration
- **20.1 Introduction**
- **20.2 DC Power Supplies**
  - **20.2.1 High-Voltage Switches**
  - **20.2.2 Load Impedance**
  - **20.2.3 Electric Power Converters**
- **20.3 Pulse Modulators**
  - **20.3.1 Active-Switch Modulator with a Resistive Load**
  - **20.3.2 Active-Switch Modulator with a Biased Diode Load**
  - **20.3.3 Line-Type Modulators**
- **20.4 RF Systems**
- **20.5 Cooling System**
- **20.6 Control System**
  - **20.6.1 Interlocks**
  - **20.6.2 Tube Protection**
- **20.7 Care of Tubes**
- **20.8 Safety**
- **20.9 Reliability**
- **20.10 Conclusion**

### Appendix
- **Mathcad Worksheets (available online at www.cambridge.org/9780521198622)**

### Index