An Introduction to Mechanics

For 40 years, Kleppner and Kolenkow’s classic text has introduced students to the principles of mechanics. Now brought up-to-date, this revised and improved Second Edition is ideal for classical mechanics courses for first- and second-year undergraduates with foundation skills in mathematics.

The book retains all the features of the first edition, including numerous worked examples, challenging problems, and extensive illustrations, and has been restructured to improve the flow of ideas. It now features:

- New examples taken from recent developments, such as laser slowing of atoms, exoplanets, and black holes
- A “Hints, Clues, and Answers” section for the end-of-chapter problems to support student learning
- A solutions manual for instructors at www.cambridge.org/kandk

Daniel Kleppner is Lester Wolfe Professor of Physics, Emeritus, at Massachusetts Institute of Technology. For his contributions to teaching he has been awarded the Oersted Medal by the American Association of Physics Teachers and the Lilienfeld Prize of the American Physical Society. He has also received the Wolf Prize in Physics and the National Medal of Science.

Robert Kolenkow was Associate Professor of Physics at Massachusetts Institute of Technology. Renowned for his skills as a teacher, Kolenkow was awarded the Everett Moore Baker Award for Outstanding Teaching.
AN INTRODUCTION TO MECHANICS

SECOND EDITION

Daniel Kleppner
Robert Kolenkow
CONTENTS

PREFACE xi
TO THE TEACHER xv
LIST OF EXAMPLES xvii

1 VECTORS AND KINEMATICS 1

1.1 Introduction 2
1.2 Vectors 2
1.3 The Algebra of Vectors 3
1.4 Multiplying Vectors 4
1.5 Components of a Vector 8
1.6 Base Vectors 11
1.7 The Position Vector \(\mathbf{r} \) and Displacement 12
1.8 Velocity and Acceleration 14
1.9 Formal Solution of Kinematical Equations 19
1.10 More about the Time Derivative of a Vector 22
1.11 Motion in Plane Polar Coordinates 26
Note 1.1 Approximation Methods 36
Note 1.2 The Taylor Series 37
Note 1.3 Series Expansions of Some Common Functions 38
Note 1.4 Differentials 39
Note 1.5 Significant Figures and Experimental Uncertainty 40
Problems 41
CONTENTS

2 **NEWTON’S LAWS** 47
 2.1 Introduction 48
 2.2 Newtonian Mechanics and Modern Physics 48
 2.3 Newton’s Laws 49
 2.4 Newton’s First Law and Inertial Systems 51
 2.5 Newton’s Second Law 51
 2.6 Newton’s Third Law 54
 2.7 Base Units and Physical Standards 59
 2.8 The Algebra of Dimensions 63
 2.9 Applying Newton’s Laws 64
 2.10 Dynamics Using Polar Coordinates 72

Problems 77

3 **FORCES AND EQUATIONS OF MOTION** 81
 3.1 Introduction 82
 3.2 The Fundamental Forces of Physics 82
 3.3 Gravity 83
 3.4 Some Phenomenological Forces 89
 3.5 A Digression on Differential Equations 95
 3.6 Viscosity 98
 3.7 Hooke’s Law and Simple Harmonic Motion 102
 Note 3.1 The Gravitational Force of a Spherical Shell 107

Problems 110

4 **MOMENTUM** 115
 4.1 Introduction 116
 4.2 Dynamics of a System of Particles 116
 4.3 Center of Mass 119
 4.4 Center of Mass Coordinates 124
 4.5 Conservation of Momentum 130
 4.6 Impulse and a Restatement of the Momentum Relation 131
 4.7 Momentum and the Flow of Mass 136
 4.8 Rocket Motion 138
 4.9 Momentum Flow and Force 143
 4.10 Momentum Flux 145
 Note 4.1 Center of Mass of Two- and Three-dimensional Objects 151

Problems 155

5 **ENERGY** 161
 5.1 Introduction 162
 5.2 Integrating Equations of Motion in One Dimension 162
 5.3 Work and Energy 166
 5.4 The Conservation of Mechanical Energy 179
 5.5 Potential Energy 182
 5.6 What Potential Energy Tells Us about Force 185
CONTENTS

5.7 Energy Diagrams 185
5.8 Non-conservative Forces 187
5.9 Energy Conservation and the Ideal Gas Law 189
5.10 Conservation Laws 192
5.11 World Energy Usage 194

Note 5.1 Correction to the Period of a Pendulum 199
Note 5.2 Force, Potential Energy, and the Vector Operator ∇ 200

Problems 205

6 TOPICS IN DYNAMICS 211
6.1 Introduction 212
6.2 Small Oscillations in a Bound System 212
6.3 Stability 217
6.4 Normal Modes 219
6.5 Collisions and Conservation Laws 225

Problems 233

7 ANGULAR MOMENTUM AND FIXED AXIS ROTATION 239
7.1 Introduction 240
7.2 Angular Momentum of a Particle 241
7.3 Fixed Axis Rotation 245
7.4 Torque 250
7.5 Torque and Angular Momentum 252
7.6 Dynamics of Fixed Axis Rotation 260
7.7 Pendulum Motion and Fixed Axis Rotation 262
7.8 Motion Involving Translation and Rotation 267
7.9 The Work–Energy Theorem and Rotational Motion 273
7.10 The Bohr Atom 277

Note 7.1 Chasles' Theorem 280
Note 7.2 A Summary of the Dynamics of Fixed Axis Rotation 282

Problems 282

8 RIGID BODY MOTION 291
8.1 Introduction 292
8.2 The Vector Nature of Angular Velocity and Angular Momentum 292
8.3 The Gyroscope 300
8.4 Examples of Rigid Body Motion 304
8.5 Conservation of Angular Momentum 310
8.6 Rigid Body Rotation and the Tensor of Inertia 312
8.7 Advanced Topics in Rigid Body Dynamics 320

Note 8.1 Finite and Infinitesimal Rotations 329
Note 8.2 More about Gyroscopes 331

Problems 337
CONTENTS

9 NON-INERTIAL SYSTEMS AND FICTITIOUS FORCES 341
 9.1 Introduction 342
 9.2 Galilean Transformation 342
 9.3 Uniformly Accelerating Systems 344
 9.4 The Principle of Equivalence 347
 9.5 Physics in a Rotating Coordinate System 356
 Note 9.1 The Equivalence Principle and the
 Gravitational Red Shift 368
 Problems 370

10 CENTRAL FORCE MOTION 373
 10.1 Introduction 374
 10.2 Central Force Motion as a One-body Problem 374
 10.3 Universal Features of Central Force Motion 376
 10.4 The Energy Equation and Energy Diagrams 379
 10.5 Planetary Motion 386
 10.6 Some Concluding Comments on Planetary Motion 402
 Note 10.1 Integrating the Orbit Integral 403
 Note 10.2 Properties of the Ellipse 405
 Problems 407

11 THE HARMONIC OSCILLATOR 411
 11.1 Introduction 412
 11.2 Simple Harmonic Motion: Review 412
 11.3 The Damped Harmonic Oscillator 414
 11.4 The Driven Harmonic Oscillator 421
 11.5 Transient Behavior 425
 11.6 Response in Time and Response in Frequency 427
 Note 11.1 Complex Numbers 430
 Note 11.2 Solving the Equation of Motion for the
 Damped Oscillator 431
 Note 11.3 Solving the Equation of Motion for the
 Driven Harmonic Oscillator 434
 Problems 435

12 THE SPECIAL THEORY OF RELATIVITY 439
 12.1 Introduction 440
 12.2 The Possibility of Flaws in Newtonian Physics 440
 12.3 The Michelson–Morley Experiment 442
 12.4 The Special Theory of Relativity 445
 12.5 Transformations 447
 12.6 Simultaneity and the Order of Events 450
 12.7 The Lorentz Transformation 451
 12.8 Relativistic Kinematics 454
 12.9 The Relativistic Addition of Velocities 463
 12.10 The Doppler Effect 466
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.11 The Twin Paradox</td>
<td>470</td>
</tr>
<tr>
<td>Problems</td>
<td>472</td>
</tr>
<tr>
<td>13 RELATIVISTIC DYNAMICS</td>
<td>477</td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>478</td>
</tr>
<tr>
<td>13.2 Relativistic Momentum</td>
<td>478</td>
</tr>
<tr>
<td>13.3 Relativistic Energy</td>
<td>481</td>
</tr>
<tr>
<td>13.4 How Relativistic Energy and Momentum</td>
<td>487</td>
</tr>
<tr>
<td>are Related</td>
<td></td>
</tr>
<tr>
<td>13.5 The Photon: A Massless Particle</td>
<td>488</td>
</tr>
<tr>
<td>13.6 How Einstein Derived $E = mc^2$</td>
<td>498</td>
</tr>
<tr>
<td>Problems</td>
<td>499</td>
</tr>
<tr>
<td>14 SPACETIME PHYSICS</td>
<td>503</td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>504</td>
</tr>
<tr>
<td>14.2 Vector Transformations</td>
<td>504</td>
</tr>
<tr>
<td>14.3 World Lines in Spacetime</td>
<td>506</td>
</tr>
<tr>
<td>14.4 An Invariant in Spacetime</td>
<td>508</td>
</tr>
<tr>
<td>14.5 Four-Vectors</td>
<td>509</td>
</tr>
<tr>
<td>14.6 The Energy–Momentum Four-Vector</td>
<td>512</td>
</tr>
<tr>
<td>14.7 Epilogue: General Relativity</td>
<td>513</td>
</tr>
<tr>
<td>Problems</td>
<td>515</td>
</tr>
</tbody>
</table>

HINTS, CLUES, AND ANSWERS TO SELECTED PROBLEMS 519

APPENDIX A MISCELLANEOUS PHYSICAL AND ASTRONOMICAL DATA 527

APPENDIX B GREEK ALPHABET 529

APPENDIX C SI PREFIXES 531

INDEX 533
PREFACE

An Introduction to Mechanics grew out of a one-semester course at the Massachusetts Institute of Technology—Physics 8.012—intended for students who seek to understand physics more deeply than the usual freshman level. In the four decades since this text was written physics has moved forward on many fronts but mechanics continues to be a bedrock for concepts such as inertia, momentum, and energy; fluency in the physicist’s approach to problem-solving—an underlying theme of this book—remains priceless. The positive comments we have received over the years from students, some of whom are now well advanced in their careers, as well as from faculty at M.I.T. and elsewhere, reassures us that the approach of the text is fundamentally sound. We have received many suggestions from colleagues and we have taken this opportunity to incorporate their ideas and to update some of the discussions.

We assume that our readers know enough elementary calculus to differentiate and integrate simple polynomials and trigonometric functions. We do not assume any familiarity with differential equations. Our experience is that the principal challenge for most students is not with understanding mathematical concepts but in learning how to apply them to physical problems. This comes with practice and there is no substitute for solving challenging problems. Consequently problem-solving takes high priority. We have provided numerous worked examples to help provide guidance. Where possible we try to tie the examples to interesting physical phenomena but we are unapologetic about totally pedagogical problems. A block sliding down a plane is sometimes mocked as the quintessentially dull physics problem but if one allows the plane to accelerate, the system takes on a new complexion.
The problems in the first edition have challenged, instructed, and occasionally frustrated generations of physicists. Some former students have volunteered that working these problems gave them the confidence to pursue careers in science. Consequently, most of the problems in the first edition have been retained and a number of new problems have been added. We continue to respect the wisdom of Piet Hein’s aphoristic ditty:\footnote{From Grooks 1 by Piet Hein, copyrighted 1966, The M.I.T. Press.}

Problems worthy of attack,
Prove their worth by hitting back.

In addition to this inspirational thought, we offer students a few practical suggestions: The problems are meant to be worked with pencil and paper. They generally require symbolic solutions: numerical values, if needed, come last. Only by looking at a symbolic solution can one decide if an answer is reasonable. Diagrams are helpful. Hints and answers are given for some of the problems. We have not included solutions in the book because checking one’s approach before making the maximum effort is often irresistible. Working in groups can be instructional for all parties. A separate solutions manual with restricted distribution is however available from Cambridge University Press.

Two revolutionary advances in physics that postdate the first edition deserve mention. The first is the discovery, more accurately the rediscovery, of chaos in the 1970’s and the subsequent emergence of chaos theory as a vital branch of dynamics. Because we could not discuss chaos meaningfully within a manageable length, we have not attempted to deal with it. On the other hand, it would have been intellectually dishonest to present evidence for the astounding accuracy of Kepler’s laws without mentioning that the solar system is chaotic, though with a time-scale too long to be observable, and so we have duly noted the existence of chaos.

The second revolutionary advance is the electronic computer. Computational physics is now a well-established discipline and some level of computational fluency is among the physicist’s standard tools. Nevertheless, we have elected not to include computational problems because they are not essential for understanding the concepts of the book, and because they have a seductive way of consuming time.

Here is a summary of the second edition: The first chapter is a mathematical introduction to vectors and kinematics. Vector notation is standard not only in the text but throughout physics and so we take some care to explain it. Translational motion is naturally described using familiar Cartesian coordinates. Rotational motion is equally important but its natural coordinates are not nearly as familiar. Consequently, we put special emphasis on kinematics using polar coordinates. Chapter 2 introduces Newton’s laws starting with the decidedly non-trivial concept of inertial systems. This chapter has been converted into two, the first (Chapter 2) discussing principles and the second (Chapter 3) devoted to applying these to various physical systems. Chapter 4 introduces the concepts of momentum, momentum flux, and the conservation of
momentum. Chapter 5 introduces the concepts of kinetic energy, potential energy, and the conservation of energy, including heat and other forms. Chapter 6 applies the preceding ideas to phenomena of general interest in mechanics: small oscillations, stability, coupled oscillators and normal modes, and collisions. In Chapter 7 the ideas are extended to rotational motion. Fixed axis rotation is treated in this chapter, followed by the more general situation of rigid body motion in Chapter 8. Chapter 9 returns to the subject of inertial systems, in particular how to understand observations made in non-inertial systems. Chapters 10 and 11 present two topics that are of general interest in physics: central force motion and the damped and forced harmonic oscillator, respectively. Chapters 12–14 provide an introduction to non-Newtonian physics: the special theory of relativity.

When we created Physics 8.012 the M.I.T. semester was longer than it is today and there is usually not enough class time to cover all the material. Chapters 1–9 constitute the intellectual core of the course. Some combination of Chapters 9–14 is generally presented, depending on the instructor’s interest.

We wish to acknowledge contributions to the book made over the years by colleagues at M.I.T. These include R. Aggarwal, G. B. Benedek, A. Burgasser, S. Burles, D. Chakrabarty, L. Dreher, T. J. Greytak, H. T. Imai, H. J. Kendall (deceased), W. Ketterle, S. Mochrie, D. E. Pritchard, P. Rebusco, S. W. Stahler, J. W. Whitaker, F. A. Wilczek, and M. Zwierlein. We particularly thank P. Dourmashkin for his help.

Daniel Kleppner
Robert J. Kolenkow
This edition of *An Introduction to Mechanics*, like the first edition, is intended for a one-semester course. Like the first edition, there are 14 chapters, though much of the material has been rewritten and two chapters are new. The discussion of Newton’s laws, which sets the tone for the course, is now presented in two chapters. Also, the discussion of energy and energy conservation has been augmented and divided into two chapters. Chapter 5 on vector calculus from the first edition has been omitted because the material was not essential and its presence seemed to generate some math anxiety. A portion of the material is in an appendix to Chapter 5.

The discussion of energy has been extended. The idea of heat has been introduced by relating the ideal gas law to the concept of momentum flux. This simultaneously incorporates heat into the principle of energy conservation, and illustrates the fundamental distinction between heat and kinetic energy. At the practical end, some statistics are presented on international energy consumption, a topic that might stimulate thinking about the role of physics in society.

The only other substantive change has been a recasting of the discussion of relativity with more emphasis on the spacetime description. Throughout the book we have attempted to make the math more user friendly by solving problems from a physical point of view before presenting a mathematical solution. In addition, a number of new examples have been provided.

The course is roughly paced to a chapter a week. The first nine chapters are vital for a strong foundation in mechanics; the remainder covers material that can be picked up in the future. The first chapter introduces...
the language of vectors and provides a background in kinematics that is used throughout the text. Students are likely to return to Chapter 1, using it as a resource for later chapters.

On a few occasions we have been able to illustrate concepts by examples based on relatively recent advances in physics, for instance exoplanets, laser-slowing of atoms, the solar powered space kite, and stars orbiting around the cosmic black hole at the center of our galaxy.

The question of student preparation for Physics 8.012 at M.I.T. comes up regularly. We have found that the most reliable predictor of performance is a quiz on elementary calculus. At the other extreme, occasionally a student takes Physics 8.012 having already completed an AP physics course. Taking a third introductory physics course might be viewed as cruel and unusual, but to our knowledge, these students all felt that the experience was worthwhile.
LIST OF EXAMPLES

Chapter 1 VECTORS AND KINEMATICS
1.1 The Law of Cosines 5; 1.2 Work and the Dot Product 5; 1.3 Examples of the Vector Product in Physics 7; 1.4 Area as a Vector 8; 1.5 Vector Algebra 10; 1.6 Constructing a Vector Perpendicular to a Given Vector 10; 1.7 Finding Velocity from Position 17; 1.8 Uniform Circular Motion 18; 1.9 Finding Velocity from Acceleration 19; 1.10 Motion in a Uniform Gravitational Field 21; 1.11 The Effect of Radio Waves on an Ionospheric Electron 21; 1.12 Circular Motion and Rotating Vectors 24; 1.13 Geometric Derivation of \(\frac{d\hat{r}}{dt} \) and \(\frac{d\hat{\theta}}{dt} \) 30; 1.14 Circular Motion in Polar Coordinates 31; 1.15 Straight Line Motion in Polar Coordinates 32; 1.16 Velocity of a Bead on a Spoke 33; 1.17 Motion on an Off-center Circle 33; 1.18 Acceleration of a Bead on a Spoke 34; 1.19 Radial Motion without Acceleration 35

Chapter 2 NEWTON’S LAWS
2.1 Inertial and Non-inertial Systems 55; 2.2 Converting Units 63; 2.3 Astronauts’ Tug-of-War 67; 2.4 Multiple Masses: a Freight Train 69; 2.5 Examples of Constrained Motion 70; 2.6 Masses and Pulley 71; 2.7 Block and String 1 73; 2.8 Block and String 2 73; 2.9 The Whirling Block 74; 2.10 The Conical Pendulum 75

Chapter 3 FORCES AND EQUATIONS OF MOTION
3.1 Turtle in an Elevator 87; 3.2 Block and String 89; 3.3 Dangling Rope 90; 3.4 Block and Wedge with Friction 93; 3.5 The Spinning
<table>
<thead>
<tr>
<th>LIST OF EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terror 94; 3.6 Whirling Rope 95; 3.7 Pulleys 97; 3.8 Terminal Velocity 99; 3.9 Falling Raindrop 101; 3.10 Pendulum Motion 104; 3.11 Spring Gun and Initial Conditions 106</td>
</tr>
</tbody>
</table>

Chapter 4 MOMENTUM

- 4.1 The Bola 118
- 4.2 Drum Major’s Baton 120
- 4.3 Center of Mass of a Non-uniform Rod 122
- 4.4 Center of Mass of a Triangular Plate 123
- 4.5 Center of Mass Motion 124
- 4.6 Exoplanets 125
- 4.7 The Push Me–Pull You 128
- 4.8 Spring Gun Recoil 130
- 4.9 Measuring the Speed of a Bullet 132
- 4.10 Rubber Ball Rebound 133
- 4.11 How to Avoid Broken Ankles 135
- 4.12 Mass Flow and Momentum 136
- 4.13 Freight Car and Hopper 138
- 4.14 Leaky Freight Car 138
- 4.15 Center of Mass and the Rocket Equation 139
- 4.16 Rocket in Free Space 140
- 4.17 Rocket in a Constant Gravitational Field 141
- 4.18 Saturn V 142
- 4.19 Slowing Atoms with Laser Light 144
- 4.20 Reflection from an Irregular Object 147
- 4.21 Solar Sail Spacecraft 148
- 4.22 Pressure of a Gas 149
- 4.23 Dike at the Bend of a River 150

Chapter 5 ENERGY

- 5.1 Mass Thrown Upward Under Constant Gravity 163
- 5.2 Solving the Equation for Simple Harmonic Motion 164
- 5.3 Vertical Motion in an Inverse Square Field 166
- 5.4 The Conical Pendulum 171
- 5.5 Escape Velocity—the General Case 171
- 5.6 Empire State Building Run-Up 173
- 5.7 The Inverted Pendulum 174
- 5.8 Work by a Uniform Force 175
- 5.9 Work by a Central Force 176
- 5.10 A Path-dependent Line Integral 177
- 5.11 Parametric Evaluation of a Line Integral 179
- 5.12 Energy Solution to a Dynamical Problem 180
- 5.13 Potential Energy of a Uniform Force Field 182
- 5.14 Potential Energy of a Central Force 183
- 5.15 Potential Energy of the Three-Dimensional Spring Force 183
- 5.16 Bead, Hoop, and Spring 184
- 5.17 Block Sliding Down an Inclined Plane 188
- 5.18 Heat Capacity of a Gas 191
- 5.19 Conservation Laws and the Neutrino 193
- 5.20 Energy and Water Flow from Hoover Dam 195

Chapter 6 TOPICS IN DYNAMICS

- 6.1 Molecular Vibrations 213
- 6.2 Lennard-Jones Potential 214
- 6.3 Small Oscillations of a Teeter Toy 216
- 6.4 Stability of the Teeter Toy 218
- 6.5 Energy Transfer Between Coupled Oscillators 221
- 6.6 Normal Modes of a Diatomic Molecule 222
- 6.7 Linear Vibrations of Carbon Dioxide 224
- 6.8 Elastic Collision of Two Balls 228
Chapter 7 ANGULAR MOMENTUM AND FIXED AXIS ROTATION
7.1 Angular Momentum of a Sliding Block 1 243; 7.2 Angular Momentum of the Conical Pendulum 244; 7.3 Moments of Inertia of Some Simple Objects 247; 7.4 Torque due to Gravity 251; 7.5 Torque and Force in Equilibrium 252; 7.6 Central Force Motion and the Law of Equal Areas 253; 7.7 Capture Cross-section of a Planet 254; 7.8 Angular Momentum of a Sliding Block 2 257; 7.9 Dynamics of the Conical Pendulum 258; 7.10 Atwood’s Machine with a Massive Pulley 261; 7.11 Kater’s Pendulum 264; 7.12 Crossing Gate 265; 7.13 Angular Momentum of a Rolling Wheel 269; 7.14 Disk on Ice 271; 7.15 Drum Rolling down a Plane 272; 7.16 Drum Rolling down a Plane: Energy Method 275; 7.17 The Falling Stick 276

Chapter 8 RIGID BODY MOTION
8.1 Rotations through Finite Angles 292; 8.2 Rotation in the x−y Plane 295; 8.3 The Vector Nature of Angular Velocity 295; 8.4 Angular Momentum of Masses on a Rotating Skew Rod 296; 8.5 Torque on the Rotating Skew Rod 298; 8.6 Torque on the Rotating Skew Rod (Geometric Method) 299; 8.7 Gyroscope Precession 302; 8.8 Why a Gyroscope Precesses 303; 8.9 Precession of the Equinoxes 304; 8.10 The Gyrocompass 305; 8.11 Gyrocompass Motion 307; 8.12 The Stability of Spinning Objects 309; 8.13 Rotating Dumbbell 314; 8.14 The Tensor of Inertia for a Rotating Skew Rod 316; 8.15 Why A Flying Saucer Is Better Than A Flying Cigar 318; 8.16 Dynamical Stability of Rigid Body Motion 325; 8.17 The Rotating Rod 327; 8.18 Euler’s Equations and Torque-free Precession 327

Chapter 9 NON-INERTIAL SYSTEMS AND FICTITIOUS FORCES
9.1 The Apparent Force of Gravity 345; 9.2 Cylinder on an Accelerating Plank 346; 9.3 Pendulum in an Accelerating Car 347; 9.4 The Driving Force of the Tides 349; 9.5 Equilibrium Height of the Tides 351; 9.6 Surface of a Rotating Liquid 360; 9.7 A Sliding Bead and the Coriolis Force 361; 9.8 Deflection of a Falling Mass 361; 9.9 Motion on the Rotating Earth 363; 9.10 Weather Systems 364; 9.11 The Foucault Pendulum 366

Chapter 10 CENTRAL FORCE MOTION
10.1 Central Force Description of Free-particle Motion 380; 10.2 How the Solar System Captures Comets 382; 10.3 Perturbed Circular Orbit 384; 10.4 Rutherford (Coulomb) Scattering 389; 10.5 Geostationary Orbit 394; 10.6 Satellite Orbit Transfer 1 395; 10.7 Satellite Orbit
LIST OF EXAMPLES

Transfer 2 397; 10.8 Trojan Asteroids and Lagrange Points 398; 10.9 Cosmic Keplerian Orbits and the Mass of a Black Hole 400

Chapter 11 THE HARMONIC OSCILLATOR
11.1 Incorporating Initial Conditions 413; 11.2 Physical Limitations to Damped Motion 417; 11.3 The Q of Two Simple Oscillators 419; 11.4 Graphical Analysis of a Damped Oscillator 420; 11.5 Driven Harmonic Oscillator Demonstration 423; 11.6 Harmonic Analyzer 426; 11.7 Vibration Attenuator 427

Chapter 12 THE SPECIAL THEORY OF RELATIVITY
12.1 Applying the Galilean Transformation 448; 12.2 Describing a Light Pulse by the Galilean Transformation 449; 12.3 Simultaneity 451; 12.4 The Role of Time Dilation in an Atomic Clock 456; 12.5 Time Dilation, Length Contraction, and Muon Decay 460; 12.6 An Application of the Lorentz Transformation 461; 12.7 The Order of Events: Time-like and Spacelike Intervals 462; 12.8 The Speed of Light in a Moving Medium 465; 12.9 Doppler Navigation 468

Chapter 13 RELATIVISTIC DYNAMICS

Chapter 14 SPACETIME PHYSICS
14.1 Relativistic Addition of Velocities 511