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2 VECTORS AND KINEMATICS

1.1 Introduction
Mechanics is at the heart of physics; its concepts are essential for under-

standing the world around us and phenomena on scales from atomic to

cosmic. Concepts such as momentum, angular momentum, and energy

play roles in practically every area of physics. The goal of this book is to

help you acquire a deep understanding of the principles of mechanics.

The reason we start by discussing vectors and kinematics rather than

plunging into dynamics is that we want to use these tools freely in dis-

cussing physical principles. Rather than interrupt the flow of discussion

later, we are taking time now to ensure they are on hand when required.

1.2 Vectors
The topic of vectors provides a natural introduction to the role of math-

ematics in physics. By using vector notation, physical laws can often

be written in compact and simple form. Modern vector notation was

invented by a physicist, Willard Gibbs of Yale University, primarily to

simplify the appearance of equations. For example, here is how New-

ton’s second law appears in nineteenth century notation:

Fx = max

Fy = may

Fz = maz.

In vector notation, one simply writes

F = ma,

where the bold face symbols F and a stand for vectors.

Our principal motivation for introducing vectors is to simplify the

form of equations. However, as we shall see in Chapter 14, vectors have

a much deeper significance. Vectors are closely related to the fundamen-

tal ideas of symmetry and their use can lead to valuable insights into the

possible forms of unknown laws.

1.2.1 Definition of a Vector
Mathematicians think of a vector as a set of numbers accompanied by

rules for how they change when the coordinate system is changed. For

our purposes, a down to earth geometric definition will do: we can think

of a vector as a directed line segment. We can represent a vector graphi-

cally by an arrow, showing both its scale length and its direction. Vectors

are sometimes labeled by letters capped by an arrow, for instance �A, but

we shall use the convention that a bold face letter, such as A, stands for

a vector.

To describe a vector we must specify both its length and its direction.

Unless indicated otherwise, we shall assume that parallel translation does

not change a vector. Thus the arrows in the sketch all represent the same

vector.
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1.3 THE ALGEBRA OF VECTORS 3

If two vectors have the same length and the same direction they are

equal. The vectors B and C are equal:

B = C.

The magnitude or size of a vector is indicated by vertical bars or, if no

confusion will occur, by using italics. For example, the magnitude of A

is written |A|, or simply A. If the length of A is
:

2, then |A| = A =
:

2.

Vectors can have physical dimensions, for example distance, velocity,

acceleration, force, and momentum.

C

B

If the length of a vector is one unit, we call it a unit vector. A unit

vector is labeled by a caret; the vector of unit length parallel to A is Â. It

follows that

Â =
A

A

and conversely

A = AÂ.

The physical dimension of a vector is carried by its magnitude. Unit

vectors are dimensionless.

1.3 The Algebra of Vectors
We will need to add, subtract, and multiply two vectors, and carry out

some related operations. We will not attempt to divide two vectors since

the need never arises, but to compensate for this omission, we will define

two types of vector multiplication, both of which turn out to be quite

useful. Here is a summary of the basic algebra of vectors.

1.3.1 Multiplying a Vector by a Scalar
If we multiply A by a simple scalar, that is, by a simple number b, the

result is a new vector C = bA. If b > 0 the vector C is parallel to A, and

its magnitude is b times greater. Thus Ĉ = Â, and C = bA.A

−A

C = bA

If b < 0, then C = bA is opposite in direction (antiparallel) to A, and

its magnitude is C = |b| A.

1.3.2 Adding Vectors
Addition of two vectors has the simple geometrical interpretation shown

by the drawing. The rule is: to add B to A, place the tail of B at the head

of A by parallel translation of B. The sum is a vector from the tail of A

to the head of B.

A + B B

A

1.3.3 Subtracting Vectors
Because A 2 B = A + (2B), to subtract B from A we can simply multi-

ply B by –1 and then add. The sketch shows how.
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4 VECTORS AND KINEMATICS

A

B

A

A + (−B) = A − B A − B

A B−B −B

An equivalent way to construct A 2 B is to place the head of B at the

head of A. Then A 2 B extends from the tail of A to the tail of B, as

shown in the drawing.

1.3.4 Algebraic Properties of Vectors
It is not difficult to prove the following:

Commutative law

A + B = B + A.

Associative law

A + (B + C) = (A + B) + C

c(dA) = (cd)A.

Distributive law

c(A + B) = cA + cB

(c + d)A = cA + dA.

A

B
B B

A

A + B = B + A

A

B

A

B + A

A + B

The sketch shows a geometrical proof of the commutative law A + B =

B + A; try to cook up your own proofs of the others.

1.4 Multiplying Vectors
Multiplying one vector by another could produce a vector, a scalar, or

some other quantity. The choice is up to us. It turns out that two types of

vector multiplication are useful in physics.

1.4.1 Scalar Product (“Dot Product”)
The first type of multiplication is called the scalar product because the

result of the multiplication is a scalar. The scalar product is an operation

www.cambridge.org/9780521198110
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-19811-0 — An Introduction to Mechanics
Daniel Kleppner, Robert Kolenkow
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.4 MULTIPLYING VECTORS 5

that combines vectors to form a scalar. The scalar product of A and B is

written as A · B, therefore often called the dot product. A · B (referred to

as “A dot B”) is defined by

A · B c AB cos ».

A

B

θ

B

A

Projection of

B on A

θ

Here » is the angle between A and B when they are drawn tail to tail.

Because B cos » is the projection of B along the direction of A, it follows

that

A · B = A times the projection of B on A

= B times the projection of A on B.

Note that A · A = |A|2 = A2. Also, A · B = B · A; the order does not

change the value. We say that the dot product is commutative.

If either A or B is zero, their dot product is zero. However, because

cos Ã/2 = 0 the dot product of two non-zero vectors is nevertheless zero

if the vectors happen to be perpendicular.

A great deal of elementary trigonometry follows from the properties

of vectors. Here is an almost trivial proof of the law of cosines using the

dot product.

A

B

C φ

θ

Example 1.1 The Law of Cosines

The law of cosines relates the lengths of three sides of a triangle to the

cosine of one of its angles. Following the notation of the drawing, the

law of cosines is

C2
= A2

+ B2 2 2AB cos Ç.

The law can be proved by a variety of trigonometric or geometric con-

structions, but none is so simple and elegant as the vector proof, which

merely involves squaring the sum of two vectors.

C = A + B

C · C = (A + B) · (A + B)

= A · A + B · B + 2(A · B)

C2
= A2

+ B2
+ 2AB cos ».

Recognizing that cos Ç = 2 cos » completes the proof.

F

d

θ

Example 1.2 Work and the Dot Product

The dot product has an important physical application in describing

the work done by a force. As you may already know, the work W done

on an object by a force F is defined to be the product of the length

of the displacement d and the component of F along the direction of

displacement. If the force is applied at an angle » with respect to the

displacement, as shown in the sketch,
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6 VECTORS AND KINEMATICS

then

W = (F cos »)d.

Assuming that force and displacement can both be written as vectors,

then

W = F · d.

1.4.2 Vector Product (“Cross Product”)
The second type of product useful in physics is the vector product, in

which two vectors A and B are combined to form a third vector C.

The symbol for vector product is a cross, so it is often called the cross

product:

C = A × B.

The vector product is more complicated than the scalar product be-

cause we have to specify both the magnitude and direction of the vec-

tor A × B (called “A cross B”). The magnitude is defined as follows:

if

C = A × B

then

C = AB sin »

where » is the angle between A and B when they are drawn tail to tail.

A

B

θ

To eliminate ambiguity, » is always taken as the angle smaller than

Ã. Even if neither vector is zero, their vector product is zero if » = 0 or

Ã, the situation where the vectors are parallel or antiparallel. It follows

that

A × A = 0

for any vector A.

Two vectors A and B drawn tail to tail determine a plane. Any plane

can be drawn through A. Simply rotate it until it also contains B.

A
B

C

z

y

x

We define the direction of C to be perpendicular to the plane of A and

B. The three vectors A, B, and C form what is called a right-hand triple.

Imagine a right-hand coordinate system with A and B in the x2y plane

as shown in the sketch.

A lies on the x axis and B lies toward the y axis. When A, B, and C

form a right-hand triple, then C lies along the positive z axis. We shall

always use right-hand coordinate systems such as the one shown.

Here is another way to determine the direction of the cross product.

Think of a right-hand screw with the axis perpendicular to A and B.
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1.4 MULTIPLYING VECTORS 7

If we rotate it in the direction that swings A into B, then C lies in the

direction the screw advances. (Warning: be sure not to use a left-hand

screw. Fortunately, they are rare, with hot water faucets among the chief

offenders. Your honest everyday wood screw is right-handed.)

A

(A is into paper)

B

C = A ×  B

A result of our definition of the cross product is that

B × A = 2A × B.

Here we have a case in which the order of multiplication is important.

The vector product is not commutative. Since reversing the order re-

verses the sign, it is anticommutative.

F

B

v

Top view

F

F

r

r

q

τ = r × F

θ

θ

F sin θ 

Example 1.3 Examples of the Vector Product in Physics

The vector product has a multitude of applications in physics. For

instance, if you have learned about the interaction of a charged particle

with a magnetic field, you know that the force is proportional to

the charge q, the magnetic field B, and the velocity of the particle

v. The force varies as the sine of the angle between v and B, and

is perpendicular to the plane formed by v and B, in the direction

indicated.

All these rules are combined in the one equation

F = qv × B.

Another application is the definition of torque, which we shall develop

in Chapter 7. For now we simply mention in passing that the torque

vector τ is defined by

τ = r × F,

where r is a vector from the axis about which the torque is evaluated to

the point of application of the force F. This definition is consistent with

the familiar idea that torque is a measure of the ability of an applied

force to produce a twist. Note that a large force directed parallel to r

produces no twist; it merely pulls. Only F sin », the component of force

perpendicular to r, produces a torque.

Imagine that we are pushing open a garden gate, where the axis of rota-

tion is a vertical line through the hinges. When we push the gate open,

we instinctively apply force in such a way as to make F closely perpen-

dicular to r , to maximize the torque. Because the torque increases as

the lever arm gets larger, we push at the edge of the gate, as far from

the hinge line as possible.

As you will see in Chapter 7, the natural direction of τ is along the

axis of the rotation that the torque tends to produce. All these ideas are

summarized in a nutshell by the simple equation τ = r × F.
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8 VECTORS AND KINEMATICS

C

C

n

A

D

D sin θ 

D

θ

ˆ

Example 1.4 Area as a Vector

We can use the cross product to describe an area. Usually one thinks

of area in terms of magnitude only. However, many applications in

physics require that we also specify the orientation of the area. For

example, if we wish to calculate the rate at which water in a stream

flows through a wire loop of given area, it obviously makes a difference

whether the plane of the loop is perpendicular or parallel to the flow.

(If parallel, the flow through the loop is zero.) Here is how the vector

product accomplishes this:

Consider the area of a quadrilateral formed by two vectors C and D.

The area A of the parallelogram is given by

A = base × height

= CD sin »

= |C × D| .

The magnitude of the cross product gives us the area of the parallel-

ogram, but how can we assign a direction to the area? In the plane of

the parallelogram we can draw an infinite number of vectors pointing

every which-way, so none of these vectors stands out uniquely. The

only unique preferred direction is the normal to the plane, specified by

a unit vector n̂. We therefore take the vector A describing the area as

parallel to n̂. The magnitude and direction of A are then given com-

pactly by the cross product

A = C × D.

A minor ambiguity remains, because n̂ can point out from either side of

the area. We could just as well have defined the area by A = D × C =

2C × D, as long as we are consistent once the choice is made.

1.5 Components of a Vector
The fact that we have discussed vectors without introducing a particular

coordinate system shows why vectors are so useful; vector operations

are defined independently of any particular coordinate system. However,

eventually we have to translate our results from the abstract to the con-

crete, and at this point we have to choose a coordinate system in which

to work.

The combination of algebra and geometry, called analytic geometry, is

a powerful tool that we shall use in many calculations. Analytic geometry

has a consistent procedure for describing geometrical objects by a set of

numbers, greatly easing the task of performing quantitative calculations.

With its aid, students still in school can routinely solve problems that

would have taxed the ancient Greek geometer Euclid. Analytic geometry

was developed as a complete subject in the first half of the seventeenth
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1.5 COMPONENTS OF A VECTOR 9

century by the French mathematician René Descartes, and independently

by his contemporary Pierre Fermat.

For simplicity, let us first restrict ourselves to a two-dimensional sys-

tem, the familiar x2y plane. The diagram shows a vector A in the x2y

plane.

θ

Ax

Ay

x

y

A The projections of A along the x and y coordinate axes are called the

components of A, Ax and Ay, respectively. The magnitude of A is A =
�

Ax
2 + Ay

2, and the direction of A makes an angle » = arctan (Ay/Ax)

with the x axis.

Since its components define a vector, we can specify a vector entirely

by its components. Thus

A = (Ax, Ay)

or, more generally, in three dimensions,

A = (Ax, Ay, Az).

Prove for yourself that A =
�

Ax
2 + Ay

2 + Az
2.

If two vectors are equal A = B, then in the same coordinate system

their corresponding components are equal.

Ax = Bx Ay = By Az = Bz.

The single vector equation A = B symbolically represents three scalar

equations.

The vector A has a meaning independent of any coordinate system.

However, the components of A depend on the coordinate system being

used. To illustrate this, here is a vector A drawn in two different coordi-

nate systems.A

x

x ′

y ′

y

A

In the first case,

A = (A, 0) (x, y system),

while in the second

A = (0,2A) (x , y system).

All vector operations can be written as equations for components. For

instance, multiplication by a scalar is written

cA = (cAx, cAy, cAz).

The law for vector addition is

A + B = (Ax + Bx, Ay + By, Az + Bz).

By writing A and B as the sums of vectors along each of the coordinate

axes, you can verify that

A · B = AxBx + AyBy + AzBz.

We shall defer evaluating the cross product until the next section.
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10 VECTORS AND KINEMATICS

Example 1.5 Vector Algebra

Let

A = (3, 5, 27)

B = (2, 7, 1).

Find A + B, A 2 B, A, B, A · B, and the cosine of the angle between A

and B.

A + B = (3 + 2, 5 + 7, 27 + 1)

= (5, 12, 26)

A 2 B = (3 2 2, 5 2 7, 27 2 1)

= (1, 22, 28)

A =
�

(32 + 52 + 72)

=

:
83

j 9.11

B =
�

(22 + 72 + 12)

=

:
54

j 7.35

A · B = 3 × 2 + 5 × 7 2 7 × 1

= 34

cos(A,B) =
A · B

AB
j

34

(9.11)(7.35)
j 0.508.

Example 1.6 Constructing a Vector Perpendicular to a Given

Vector
The problem is to find a unit vector lying in the x2y plane that is

perpendicular to the vector A = (3, 5, 1).

A vector B in the x2y plane has components (Bx, By). For B to be

perpendicular to A, we must have A · B = 0:

A · B = 3Bx + 5By

= 0.

Hence By = 2 3
5

Bx. For B to be a unit vector, Bx
2
+By

2
= 1. Combining

these gives

Bx
2
+

9

25
Bx

2
= 1,

or

Bx =

"

25

34
j ±0.858

By = 2 3
5

Bx

j 30.515.
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