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Orientation

The concept of “special function” is one that has no precise definition. From
a practical point of view, a special function is a function of one variable that
is (a) not one of the “elementary functions” – algebraic functions, trigono-
metric functions, the exponential, the logarithm, and functions constructed
algebraically from these functions – and is (b) a function about which one can
find information in many of the books about special functions. A large amount
of such information has been accumulated over a period of three centuries.
Like such elementary functions as the exponential and trigonometric functions,
special functions arise in numerous contexts. These contexts include both pure
mathematics and applications, ranging from number theory and combinatorics
to probability and physical science.

The majority of the special functions that are treated in many of the general
books on the subject are solutions of certain second-order linear differen-
tial equations. Indeed, these functions were discovered through the study of
physical problems: vibrations, heat flow, equilibrium, and so on. The asso-
ciated equations are partial differential equations of second order. In some
coordinate systems, these equations can be solved by separation of variables,
leading to the second-order ordinary differential equations in question. (Solu-
tions of the analogous first-order linear differential equations are elementary
functions.)

Despite the long list of adjectives and proper names attached to this
class of special functions (hypergeometric, confluent hypergeometric, cylinder,
parabolic cylinder, spherical, Airy, Bessel, Hankel, Hermite, Kelvin, Kummer,
Laguerre, Legendre, Macdonald, Neumann, Weber, Whittaker, . . .), each of
them is closely related to one of two families of equations: the confluent
hypergeometric equation(s)

x u′′(x) + (c − x) u′(x) − a u(x) = 0 (1.0.1)
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2 Orientation

and the hypergeometric equation(s)

x(1 − x) u′′(x) + [c − (a + b + 1)x] u′(x) − ab u(x) = 0. (1.0.2)

The parameters a, b, c are real or complex constants.
Some solutions of these equations are polynomials: up to a linear change

of variables, they are the “classical orthogonal polynomials.” Again, there are
many names attached: Chebyshev, Gegenbauer, Hermite, Jacobi, Laguerre,
Legendre, ultraspherical. In this chapter we discuss one context in which these
equations, and (up to normalization) no others, arise. We also shall see how
two equations can, in principle, give rise to such a menagerie of functions.

Some special functions are not closely connected to linear second-order
differential equations. These exceptions include the gamma function, the beta
function, and the elliptic functions. The gamma and beta functions evaluate
certain integrals. They are indispensable in many calculations, especially in
connection with the class of functions mentioned earlier, as we illustrate below.

Elliptic functions arise as solutions of a simple nonlinear second-order
differential equation, and also in connection with integrating certain algebraic
functions. They have a wide range of applications, from number theory to
integrable systems.

1.1 Power series solutions

The general homogeneous linear second-order equation is

p(x) u′′(x) + q(x) u′(x) + r(x) u(x) = 0, (1.1.1)

with p not identically zero. We assume here that the coefficient functions p, q,
and r are holomorphic (analytic) in a neighborhood of the origin.

If a function u is holomorphic in a neighborhood of the origin, then the
function on the left-hand side of (1.1.1) is also holomorphic in a neighborhood
of the origin. The coefficients of the power series expansion of this function can
be computed from the coefficients of the expansions of the functions p, q, r ,
and u. Under these assumptions, equation (1.1.1) is equivalent to the sequence
of equations obtained by setting the coefficients of the expansion of the left-
hand side equal to zero. Specifically, suppose that the coefficient functions
p, q, r have series expansions

p(x) =
∞∑

k=0

pk xk, q(x) =
∞∑

k=0

qk xk, r(x) =
∞∑

k=0

rk xk,

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19797-7 - Special Functions: A Graduate Text
Richard Beals and Roderick Wong
Excerpt
More information

http://www.cambridge.org/9780521197977
http://www.cambridge.org
http://www.cambridge.org


1.1 Power series solutions 3

and u has the expansion

u(x) =
∞∑

k=0

uk xk .

Then the constant term and the coefficients of x and x2 on the left-hand side
of (1.1.1) are

2p0u2 + q0u1 + r0u0, (1.1.2)

6p0u3 + 2p1u2 + 2q0u2 + q1u1 + r1u0 + r0u1,

12p0u4 + 6p1u3 + 2p2u2 + 3q0u3 + 2q1u2 + q2u1 + r0u2 + r1u1 + r2u0,

respectively. The sequence of equations equivalent to (1.1.1) is the sequence∑
j+k=n, k≥0

(k + 2)(k + 1)p j uk+2 +
∑

j+k=n, k≥0

(k + 1)q j uk+1

+
∑

j+k=n, k≥0

r j uk = 0, n = 0, 1, 2, . . . (1.1.3)

We say that equation (1.1.1) is recursive if it has a nonzero solution u
holomorphic in a neighborhood of the origin, and equations (1.1.3) determine
the coefficients {un} by a simple recursion: the nth equation determines un

in terms of un−1 alone. Suppose that (1.1.1) is recursive. Then the first of
equations (1.1.2) should involve u1 but not u2, so p0 = 0, q0 �= 0. The second
equation should not involve u3 or u0, so r1 = 0. Similarly, the third equation
shows that q2 = r2 = 0. Continuing, we obtain

p0 = 0, p j = 0, j ≥ 3; q j = 0, j ≥ 2; r j = 0, j ≥ 1.

After collecting terms, the nth equation is then[
(n + 1)np1 + (n + 1)q0

]
un+1 + [

n(n − 1) p2 + nq1 + r0
]

un = 0.

For special values of the parameters p1, p2, q0, q1, r0 one of these coefficients
may vanish for some value of n. In such a case either the recursion breaks down
or the solution u is a polynomial, so we assume that this does not happen. Thus

un+1 = − n(n − 1)p2 + nq1 + r0

(n + 1)np1 + (n + 1)q0
un . (1.1.4)

Assume u0 �= 0. If p1 = 0 but p2 �= 0, the series
∑∞

n=0 un xn diverges for
all x �= 0 (ratio test). Therefore, up to normalization – a linear change of
coordinates and a multiplicative constant – we may assume that p(x) has one
of the two forms p(x) = x(1 − x) or p(x) = x .
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4 Orientation

If p(x) = x(1 − x) then equation (1.1.1) has the form

x(1 − x) u′′(x) + (q0 + q1x) u′(x) + r0 u(x) = 0.

Constants a and b can be chosen so that this is (1.0.2).
If p(x) = x and q1 �= 0 we may replace x by a multiple of x and take

q1 = −1. Then (1.1.1) has the form (1.0.1).
Finally, suppose p(x) = x and q1 = 0. If also r0 = 0, then (1.1.1) is a first-

order equation for u′. Otherwise we may replace x by a multiple of x and take
r0 = 1. Then (1.1.1) has the form

x u′′(x) + c u′(x) + u(x) = 0. (1.1.5)

This equation is not obviously related to either of (1.0.1) or (1.0.2). However, it
can be shown that it becomes a special case of (1.0.1) after a change of variable
and a “gauge transformation” (see exercises).

Summarizing: up to certain normalizations, an equation (1.1.1) is recursive
if and only if it has one of the three forms (1.0.1), (1.0.2), or (1.1.5). Moreover,
(1.1.5) can be transformed to a case of (1.0.1).

Let us note briefly the answer to the analogous question for a homogeneous
linear first-order equation

q(x) u′(x) + r(x) u(x) = 0 (1.1.6)

with q not identically zero. This amounts to taking p = 0 in the argument
above. The conclusion is again that q is a polynomial of degree at most one,
with q0 �= 0, while r = r0 is constant. Up to normalization, q(x) has one of
the two forms q(x) = 1 or q(x) = x − 1. Thus the equation has one of the two
forms

u′(x) − a u(x) = 0; (x − 1)u′(x) − a u(x) = 0,

with solutions

u(x) = c eax ; u(x) = c (x − 1)a,

respectively.
Let us return to the confluent hypergeometric equation (1.0.1). The power

series solution with u0 = 1 is sometimes denoted M(a, c; x). It can be calcu-
lated easily from the recursion (1.1.4). The result is

M(a, c; x) =
∞∑

n=0

(a)n

(c)n n ! xn, c �= 0,−1,−2, . . . (1.1.7)
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1.2 The gamma and beta functions 5

Here the “shifted factorial” or “Pochhammer symbol” (a)n is defined by

(a)0 = 1, (a)n = a(a + 1)(a + 2) · · · (a + n − 1), (1.1.8)

so that (1)n = n !. The series (1.1.7) converges for all complex x (ratio test),
so M is an entire function of x .

The special nature of equation (1.0.1) is reflected in the special nature of the
coefficients of M . It leads to a number of relationships among these functions
when the parameters (a, b) are varied. For example, a comparison of coeffi-
cients shows that the three “contiguous” functions M(a, c; x), M(a + 1, c; x),
and M(a, c − 1; x) are related by

(a − c + 1) M(a, c; x) − a M(a + 1, c, x) + (c − 1) M(a, c − 1; x) = 0.

(1.1.9)

Similar relations hold whenever the respective parameters differ by integers.
(In general, the coefficients are rational functions of (a, c, x) rather than simply
linear functions of (a, b).)

1.2 The gamma and beta functions

The gamma function

�(a) =
∫ ∞

0
e−t ta−1 dt, Re a > 0,

satisfies the functional equation a �(a) = �(a + 1). More generally, the
shifted factorial (1.1.8) can be written

(a)n = �(a + n)

�(a)
.

It is sometimes convenient to use this form in series like (1.1.7).
A related function is the beta function, or beta integral,

B(a, b) =
∫ 1

0
sa−1(1 − s)b−1 ds, Re a > 0, Re b > 0,

which can be evaluated in terms of the gamma function

B(a, b) = �(a) �(b)

�(a + b)
;
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6 Orientation

see the next chapter. These identities can be used to obtain a representation of
the function M in (1.1.7) as an integral, when Re c > Re a > 0. In fact

(a)n

(c)n
= �(a + n)

�(a)
· �(c)

�(c + n)

= �(c)

�(a) �(c − a)
B(a + n, c − a)

= �(c)

�(a) �(c − a)

∫ 1

0
sn+a−1(1 − s)c−a−1 ds.

Therefore

M(a, c; x) = �(c)

�(a) �(c − a)

∫ 1

0

{
sa−1(1 − s)c−a−1

∞∑
n=0

(sx)n

n!

}
ds

= �(c)

�(a) �(c − a)

∫ 1

0
sa−1(1 − s)c−a−1esx ds. (1.2.1)

This integral representation is useful in obtaining information that is not evi-
dent from the power series expansion (1.1.7).

1.3 Three questions

First question: How can it be that so many of the functions mentioned in the
introduction to this chapter can be associated with just two equations (1.0.1)
and (1.0.2)?

Part of the answer is that different solutions of the same equation may have
different names. An elementary example is the equation

u′′(x) − u(x) = 0. (1.3.1)

One might wish to normalize a solution by imposing a condition at the origin
like

u(0) = 0 or u′(0) = 0,

leading to u(x) = sinh x or u(x) = cosh x respectively, or a condition at
infinity like

lim
x→−∞ u(x) = 0 or lim

x→+∞ u(x) = 0,
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1.3 Three questions 7

leading to u(x) = ex or u(x) = e−x respectively. Similarly, Bessel, Neumann,
and both kinds of Hankel functions are four solutions of a single equation,
distinguished by conditions at the origin or at infinity.

The rest of the answer to the question is that one can transform solutions of
one second-order linear differential equation into solutions of another, in two
simple ways. One such transformation is a change of variables. For example,
starting with the equation

u′′(x) − 2x u′(x) + λ u(x) = 0, (1.3.2)

suppose u(x) = v(x2). It is not difficult to show that (1.3.2) is equivalent to
the equation

y v′′(y) +
(

1

2
− y

)
v′(y) + 1

4
λ v(y) = 0,

which is the case a = − 1
4λ, c = 1

2 of (1.0.1). Therefore, even solutions of
(1.3.2) can be identified with certain solutions of (1.0.1). The same is true
of odd solutions: see the exercises. An even simpler example is the change
u(x) = v(i x) in (1.3.1), leading to v′′ + v = 0, and the trigonometric and
complex exponential solutions sin x , cos x , eix , e−i x .

The second type of transformation is a “gauge transformation”. For exam-
ple, if the function u in (1.3.2) is written in the form

u(x) = ex2/2 v(x),

then (1.3.2) is equivalent to an equation with no first-order term:

v′′(x) + (1 + λ − x2) v(x) = 0. (1.3.3)

Each of the functions mentioned in the third paragraph of the introduction to
this chapter is a solution of an equation that can be obtained from (1.0.1) or
(1.0.2) by one or both of a change of variable and a gauge transformation.

Second question: What does one want to know about these functions?

As we noted above, solutions of an equation of the form (1.1.1) can be
chosen uniquely through various normalizations, such as behavior as x → 0
or as x → ∞. The solution (1.1.7) of (1.0.1) is normalized by the condition
u(0) = 1. Having explicit formulas, like (1.1.7) for the function M , can be
very useful. On the other hand, understanding the behavior as x → +∞ is
not always straightforward. The integral representation (1.2.1) allows one to
compute this behavior for M (see exercises). This example illustrates why it
can be useful to have an integral representation (with an integrand that is well
understood).
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8 Orientation

Any three solutions of a second-order linear equation (1.1.1) satisfy a linear
relationship, and one wants to compute the coefficients of such a relationship.
An important tool in this and in other aspects of the theory is the computation
of the Wronskian of two solutions u1, u2:

W (u1, u2)(x) ≡ u1(x) u′
2(x) − u2(x) u′

1(x).

In particular, these two solutions are linearly independent if and only if the
Wronskian does not vanish.

Because of the special nature of equations (1.0.1) and (1.0.2) and the
equations derived from them, solutions satisfy various linear relationships like
(1.1.9). One wants to determine a set of relationships that generate all such
relationships.

Finally, the coefficient of the zero-order term in equations like (1.0.1),
(1.0.2), or (1.3.3) is an important parameter, and one often wants to know how
a given normalized solution like M(a, c; x) varies as the parameter approaches
±∞. In (1.3.3), denote by vλ the even solution normalized by vλ(0) = 1. As
1 + λ = µ2 → +∞, over any bounded interval the equation looks like a small
perturbation of the equation v′′ + µ2v = 0. Therefore it is plausible that

vλ(x) ∼ Aλ(x) cos(µx + Bλ) as λ → +∞,

with Aλ(x) > 0. We want to compute the “amplitude function” Aλ(x) and the
“phase constant” Bλ. Some words about notation like that in the preceding
equation: the meaning of the statement

f (x) ∼ A g(x) as x → ∞
is

lim
x→∞

f (x)

g(x)
= A.

This is in slight conflict with the notation for an asymptotic series expansion:

f (x) ∼ g(x)

∞∑
n=0

an x−n as x → ∞

means that for every positive integer N , truncating the series at n = N gives
an approximation to order x−N−1:

f (x)

g(x)
−

N∑
n=0

an x−n = O
(

x−N−1
)

as x → ∞.
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1.3 Three questions 9

As usual, the “big O” notation

h(x) = O
(
k(x)

)
as x → ∞

means that there are constants A, B such that∣∣∣∣h(x)

k(x)

∣∣∣∣ ≤ A if x ≥ B.

The similar “small o” notation

h(x) = o
(
k(x)

)
means

lim
x→∞

h(x)

k(x)
= 0.

Third question: Is this list of functions or related equations exhaustive, in any
sense?

A partial answer has been given: the requirement that the equation be “recur-
sive” leads to just three cases, (1.0.1), (1.0.2), and (1.1.5), and the third of these
three equations reduces to a case of the first equation. Two other answers are
given in Chapter 3.

The first of the two answers in Chapter 3 starts with a question of mathe-
matics: given that a differential operator of the form that occurs in (1.1.1),

p(x)
d2

dx2
+ q(x)

d

dx
+ r(x),

is self-adjoint with respect to a weight function on a (bounded or infinite)
interval, under what circumstances will the eigenfunctions be polynomials?
An example is the operator in (1.3.2), which is self-adjoint with respect to the
weight function w(x) = e−x2

on the line:∫ ∞

−∞
[
u′′(x) − 2x u′(x)

]
v(x) e−x2

dx =
∫ ∞

−∞
u(x)

[
v′′(x) − 2x v′(x)

]
e−x2

dx .

The eigenvalues are λ = 2, 4, 6, . . . in (1.3.2) and the Hermite polynomials
are eigenfunctions. Up to normalization, the equation associated with such an
operator is one of the three equations (1.0.1), (1.0.2) (after a simple change of
variables), or (1.3.2). Moreover, as suggested above, (1.3.2) can be converted
to two cases of (1.0.1).

The second of the two answers in Chapter 3 starts with a question of
mathematical physics: given the Laplace equation

�u(x) = 0
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10 Orientation

or the Helmholtz equation

�u(x) + λ u(x) = 0

say in three variables, x = (x1, x2, x3), what equations arise by separating
variables in various coordinate systems (cartesian, cylindrical, spherical,
parabolic–cylindrical)? Each of the equations so obtained can be related to one
of (1.0.1) and (1.0.2) by a gauge transformation and/or a change of variables.

1.4 Elliptic functions

The remaining special functions to be discussed in this book are also associated
with a second-order differential equation, but not a linear equation. One of the
simplest nonlinear second-order differential equations of mathematical physics
is the equation that describes the motion of an ideal pendulum, which can be
normalized to

2 θ ′′(t) = −sin θ(t). (1.4.1)

Multiplying equation (1.4.1) by θ ′(t) and integrating gives[
θ ′(t)

]2 = a + cos θ(t) (1.4.2)

for some constant a. Let u = sin 1
2θ . Then (1.4.2) takes the form

[
u′(t)

]2 = A
[
1 − u(t)2] [

1 − k2u(t)2]. (1.4.3)

By rescaling time t , we may take the constant A to be 1. Solving for t as a
function of u leads to the integral form

t =
∫ u

u0

dx√
(1 − x2)(1 − k2x2)

. (1.4.4)

This is an instance of an elliptic integral: an integral of the form∫ u

u0

R
(

x,
√

P(x)
)

dx, (1.4.5)

where P is a polynomial of degree 3 or 4 with no repeated roots and R is a
rational function (quotient of polynomials) in two variables. If P had degree 2,
then (1.4.5) could be integrated by a trigonometric substitution. For example∫ u

0

dx√
1 − x2

= sin−1 u;
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