Contents

About the Author
Making My Book Social
Acknowledgements
Before We Begin
About This Book

Part I What's In Your Area Network?

1
It's a Small Wireless World
1.1 Let's Keep It Simple (Stupid!)
1.1.1 Applying ICE to Your Wireless Product Development Life-cycle
1.1.2 Interference and the Packet-hungry
1.1.3 Cutting the Cable
1.2 Understanding the Audience
1.3 Making Wireless Technology New
1.3.1 The Nineteenth-century Wireless Secret
1.3.2 Sourcing New Applications
1.3.3 Reinventing the Wheel
1.3.4 Selling the Sizzle, not the Sausage
1.3.5 A Wireless Utopia

2
What is a Personal Area Network?
2.1 The Origin of the Area Network
2.2 The Personal Area Network
2.2.1 Conception
2.2.2 The *Wireless* Personal Area Network
2.2.3 The Wi-Fi Anomaly
2.2.4 802.15 WPAN
2.3 Ever-decreasing Circles
3 Disruptive Topologies through Technology Convergence

3.1 Disruptive Topologies
- 3.1.1 Understanding Networking Topologies
- 3.1.2 Dissolving the Boundaries

3.2 Technology Convergence
- 3.2.1 White Space Radio
- 3.2.2 3G, LTE, and LTE Advanced
- 3.2.3 Satellite Broadband

4 Introducing the Lawnmower Man Effect

4.1 Overview
4.2 The Social Media Phenomenon
- 4.2.1 Cross Platform Promotion

4.3 Intelligent Personal Area Networking
4.4 The Extended Personal Area Network
- 4.4.1 The Home Area Network
- 4.4.2 The Body Area Network
- 4.4.3 The Vehicle Area Network

4.5 Wireless Convergence
- 4.5.1 A One-Size-Fits-All Technology

4.6 Media Convergence
- 4.6.1 Social TV

Part II The Wireless Sensor Network

5 Introducing Low Power and Wireless Sensor Technologies

5.1 Energy Efficient Labeling
- 5.1.1 The European Union Energy Label
- 5.1.2 The International Energy Star Logo

5.2 Energy Efficient Techniques in Wireless Technology
- 5.2.1 Deriving Energy from Alternative Resources
- 5.2.2 What Is Renewable Energy?
- 5.2.3 No Batteries Required
- 5.2.4 Optimizing Data Transmission

5.3 What Do Low Power and Sensor Technology Provide?
5.4 What Should We Expect from Part II?

6 Enabling the Internet of Things

6.1 Shaping an IP-enabled World
- 6.1.1 What Are Smart Objects?
- 6.1.2 Smart Agents

6.2 The IoT Architecture
Bluetooth low energy: The *Smart* Choice

7.1 Overview
- *The History of Bluetooth low energy* 67
- *Opening up a New Market for Bluetooth Technology* 67
- *The Bluetooth low energy Timeline* 68
- *The Bluetooth Special Interest Group* 69

7.2 The Bluetooth low energy Market 69

7.3 The Bluetooth low energy Application Portfolio
- *BLE-specific Profiles* 70

7.4 Bluetooth low energy and its Competitors
- *The New 3-in-1 Specification* 77

7.5 Networking Topology
- *Piconets* 78

7.6 The Bluetooth low energy Architecture
- *The Physical Layer* 80
- *The Link Layer* 81
- *The Host Controller Interface* 87
- *L2CAP* 90
- *The Attribute Protocol* 91
- *The Security Manager Protocol* 93
- *The Generic Attribute Profile* 96
- *Generic Access Profile* 97

Control Your World with ZigBee

8.1 Overview
- *The ZigBee Alliance* 101
- *ZigBee’s Timeline* 102

8.2 ZigBee’s Market 103

8.3 ZigBee’s Application Standards Portfolio
- *Home Automation* 105
- *Building Automation* 106
- *Smart Energy* 106
- *Remote Control* 106
- *Input Device* 107
- *3D Sync* 107
- *Telecom Services* 107
- *Health Care* 107
- *Retail Services* 108

8.4 ZigBee and its Competitors
- *Overlapping Technologies* 108

8.5 Networking Topology
- *ZigBee Devices* 110

8.6 The Application Layer 111
Contents

8.7 Application Framework 112
8.7.1 Application Profiles 112
8.7.2 Endpoints 113
8.7.3 Device Descriptors 113
8.8 ZigBee Device Objects 118
8.8.1 Device Profile 118
8.8.2 Device Objects 121
8.9 Application Support Sub-layer 121
8.9.1 APS Service Primitives 123
8.9.2 APS Frame Formats 125
8.10 The Network Layer 130
8.10.1 NWK Service Primitives 131
8.10.2 NWK Frame Formats 132
8.11 ZigBee Security 138
8.12 MAC and PHY Layers 140
8.12.1 Coexistence 140
8.13 ZigBee RF4CE 140
8.13.1 Networking Topology 141
8.13.2 The ZigBee RF4CE Application Layer 142
8.13.3 The ZigBee RF4CE Network Layer 143

9 Green, Smart, and Wireless: EnOcean 146
9.1 Overview 146
9.1.1 Venture-funding 147
9.1.2 The EnOcean Alliance 147
9.1.3 EnOcean’s Timeline 148
9.2 EnOcean’s Market 149
9.3 EnOcean’s Application Portfolio 151
9.4 EnOcean and its Competitors 152
9.5 Networking Topology 153
9.6 The Dolphin Platform 155
9.6.1 The EnOcean Radio Protocol 156
9.6.2 The EnOcean Serial Protocol 160
9.7 The Dolphin Architecture 162
9.7.1 The DolphinAPI 163
9.7.2 The EnOcean System Software Layer 164
9.7.3 Smart Acknowledge 166
9.7.4 The Hardware Abstraction Layer 170
9.8 The EnOcean Equipment Profiles 170

10 The Power of Less: ANT 175
10.1 Overview 175
10.1.1 The ANT+ Alliance 176
10.1.2 ANT’s Timeline 177
10.2 ANT’s Market 179
10.3 ANT’s Application Portfolio 180
 10.3.1 ANT+ Device Profiles 182
10.4 ANT Wireless and its Competitors 191
10.5 Networking Topology 191
 10.5.1 Channel-based Communication 193
10.6 The ANT Architecture 194
 10.6.1 The ANT Node 195
 10.6.2 ANT Channels 196
 10.6.3 Device Pairing 200
10.7 The ANT Interface 201

Part III The Classic Personal Area Network 203

11 Introducing the Classic Personal Area Networking Technologies 205
 11.1 It’s Never as Simple as Just Cutting the Cable! 205
 11.2 What Do Classic PAN Technologies Provide? 208
 11.3 What Should We Expect from Part III? 210

12 Just Touch with NFC 211
 12.1 Overview 211
 12.1.1 The NFC Forum 214
 12.1.2 Comparing NFC and RFID 216
 12.1.3 NFC’s Timeline 216
 12.2 NFC’s Market 218
 12.3 NFC’s Application Portfolio 220
 12.4 NFC and its Competitors 224
 12.4.1 Complementary rather than Competitive 224
 12.5 Networking Topology 225
 12.6 The NFC Architecture 226
 12.6.1 Peer-to-Peer Mode 226
 12.6.2 Card Emulation Mode 227
 12.6.3 Reader/Writer Mode 227
 12.7 Simple NDEF Exchange Protocol 228
 12.7.1 The SNEP Request Message 229
 12.7.2 The SNEP Response Message 229
 12.7.3 Versioning 230
 12.7.4 SNEP Fragmentation 231
 12.8 The Logical Link Control Protocol 232
 12.8.1 The LLCP Architecture 233
 12.8.2 The LLC PDU Format 234
 12.9 NFC Data Exchange Format 236
 12.9.1 The Record Format 238
 12.9.2 Chunking 238
Contents

12.10 Record Type Definition 239
12.10.1 Record Types 240
12.11 Activities, Digital Protocol, and Analog 241

13 The 802.11 Generation and Wi-Fi 243

13.1 Overview 244
13.1.1 Ethernet 244
13.1.2 The 802.11 Standards 245
13.1.3 The Wi-Fi Alliance 245
13.1.4 Wi-Fi’s Timeline 248
13.2 Wi-Fi’s Market 250
13.3 Wi-Fi Application Portfolio 252
13.4 Wi-Fi and its Competitors 254
13.5 Networking Topologies 255
13.5.1 Service Set Identifier 255
13.5.2 Wireless Stations 256
13.5.3 Basic Service Set 257
13.5.4 Distribution Systems 258
13.5.5 Mesh BSSs 259
13.6 The 802.11 Software Architecture 260
13.6.1 MAC Data Service 262
13.6.2 PHY Services 263
13.6.3 The 2.4 GHz DSSS System 266
13.6.4 The OFDM PHY System 269
13.6.5 The HT PHY 269
13.6.6 Layer Management 269
13.7 Wi-Fi Protected Access 270
13.7.1 Security Features with WPA2 270
13.8 Wi-Fi Protected Setup 271
13.8.1 Set-up Options 272
13.8.2 The Registrar 272
13.9 Wi-Fi Multimedia 272
13.9.1 Empowering Wi-Fi Networks with QoS 273
13.9.2 WMM-Power Save 275
13.10 Wi-Fi Direct 275
13.10.1 Wi-Fi is More Than Internet Connectivity 276
13.10.2 Wi-Fi Direct in an Enterprise Context 277
13.10.3 Certification 278

14 Bluetooth Classic and High speed: More Than Cable Replacement 279

14.1 Overview 279
14.1.1 The Bluetooth Special Interest Group 280
14.1.2 Bluetooth’s Timeline 281
14.1.3 Shaping the Personal Area Network 283
14.2 Bluetooth’s Market 283
14.3 Bluetooth’s Application Portfolio 284
 14.3.1 Bluetooth Profiles 284
14.4 Bluetooth wireless technology and its Competitors 290
14.5 Networking Topology 291
 14.5.1 Piconets and Scatternets 291
14.6 The Bluetooth Architecture 292
 14.6.1 The Physical Layer 293
 14.6.2 The Link Controller 295
 14.6.3 The Link Manager 303
 14.6.4 The AMP Architecture 305
 14.6.5 The Host Controller Interface 306
 14.6.6 L2CAP 308
 14.6.7 Service Discovery Protocol 313
 14.6.8 Generic Access Profile 316

15 One Standard, All Devices: WHDI 322
 15.1 Overview 322
 15.1.1 The WHDI Consortium 323
 15.1.2 WHDI’s Timeline 324
 15.2 WHDI’s Market 325
 15.3 WHDI’s Application Portfolio 327
 15.4 WHDI and its Competitors 330
 15.5 Networking Topology 331
 15.5.1 The WHDI Network 332
 15.5.2 Network Management 334
 15.6 Comparing WHDI with HDMI Systems 337
 15.7 Comparing WHDI with WLAN Systems 337
 15.8 WHDI’s Video-Modem 337
 15.9 The WHDI Architecture 339
 15.9.1 The Audio/Video Control Layer 340
 15.9.2 The WHDI MAC Layer 341
 15.9.3 The WHDI PHY Layer 341
 15.10 Audio and Video 341
 15.10.1 Audio Requirements Snapshot 342
 15.10.2 Video Requirements Snapshot 343
 15.11 Security 345
 15.11.1 The Content Protection Scheme 345
 15.11.2 The Wireless Security Scheme 345

Part IV Forthcoming Technologies and Conclusions 347

16 Future and Emerging Technologies 349
 16.1 802.11ac 349
Contents

16.1.1 Super Wi-Fi or 5G?
16.1.2 The Obvious Market Potential
16.2 White Space Radio
16.2.1 Market Opportunity
16.3 Certified Wireless USB
16.3.1 Choosing Ultra-wideband for Wireless USB
16.3.2 Certified Wireless USB and 802.11ad
16.4 WiGig
16.4.1 WiGig and 802.11ad
16.4.2 WiGig Beamforming
16.5 WirelessHD

17 Summary and Conclusions

17.1 Making Sense of Wireless Technology
17.2 Smarter Devices
17.3 Keep It Unplugged
17.4 What's Next?

Glossary
References and Bibliography
Index