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A Brief History of Unification

“Pure logical thinking cannot yield us any knowledge of the empirical world; all

knowledge of reality starts from experience and ends in it.”

—Albert Einstein*

Unification is a common theme that runs through the development of particle

physics. Progress is made when one discovers an underlying unifying principle

that connects different particles, different forces, or different phenomena. One

of the early examples is the concept of iso-spin. Heisenberg [2] introduced it

to explain the very similar nuclear properties of the proton and of the neutron

despite the fact that one is charged and the other is neutral. Thus, here one

postulates an SU(2) internal symmetry group with generators Ta (a = 1, 2, 3)

which satisfy the algebra

[Ta, Tb] = iǫabcTc, (1.1)

where ǫabc is +1 when a, b, and c are cyclic, −1 when they are acyclic, and

vanishes otherwise, and the proton (p) and the neutron (n) belong to the doublet

representation of this group so that

N ≡
(

p

n

)

→
(

+1/2

−1/2

)

, (1.2)

where the column after the arrow gives T3 quantum numbers of the components.

The column vector with p and n states is often called the nucleon, to emphasize

that the proton and the neutron are coming from a common multiplet. Similarly,

the three pseudo-scalar mesons π± and π0 can be thought of as components of

a T = 1 multiplet φa where

π± = (φ1 ∓ iφ2)/
√
2, π0 = φ3. (1.3)

* From the Herbert Spencer Lecture 1933 as cited by A. Salam [1].
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2 A Brief History of Unification

The pion–nucleon system then can be described by the interaction Lagrangian

LππN = gππN N̄γ5
τa
2
Nφa, (1.4)

where τa (a = 1, 2, 3) are the Pauli matrices. It is easily checked that this

interaction is invariant under global iso-spin transformations. The interactions

p̄pπ0, n̄nπ0, and p̄nπ+ are now governed by a single coupling constant.

A more potent illustration is the classification of the pseudo-scalar mesons

and baryons. Thus, the JP = 0− mesons consisting of π+, π0, π−, K+, K0,

K0, K−, and η0 can be grouped into the octet representation [3–5] of an SU(3)

flavor group with assignment of iso-spin T and a new quantum number called

hypercharge Y as follows:

0− mesons T Y

π+, π0, π− 1 0

K+, K0 1

2

1

2

K0, K− 1

2
−1

2

η0 0 0 (1.5)

where the hypercharge is defined so that

Y =
1

2
(S +NB). (1.6)

Here, S is the strangeness quantum number and NB is the baryon number, and

the electric charge of a particle is given by

Q = T3 + Y . (1.7)

Similarly, the spin 1/2 baryons p, n, Σ+, Σ0, Σ−, Ξ0, and Ξ− can also be

classified in the octet representation of SU(3) with the iso-spin and hypercharge

assignments similar to the case for the pseudo-scalar bosons as shown below:

spin
1

2
baryons T Y

Σ+, Σ0, Σ− 1 0

p, n
1

2

1

2

Ξ0, Ξ− 1

2
−1

2

Λ0 0 0 (1.8)

Further, the interactions of the octet of baryons with the octet of pseudo-scalar

mesons can be described by just two (F-type and D-type) coupling constants.

This means that the couplings of interactions such as N̄	τN · 	π and Λ̄Λη0, N̄ΛK
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A Brief History of Unification 3

become related, which is an enormous simplification over an otherwise huge num-

ber of possible couplings in the absence of a symmetry principle. Of course, the

SU(3) symmetry like the iso-spin symmetry is not exact, but simple assumptions

on how the symmetry breaks allow one to derive sum rules known as Gell–Mann–

Okubo mass relations [6] among the masses within the multiplets, and these sum

rules are in reasonably good agreement with experimental data on the pseudo-

scalar meson masses and on the baryon masses.

The SU(3) symmetry also helps in the classification of the meson–baryon

resonances. Since the meson–baryon resonances must decay into mesons and

baryons which belong to octet representations, one expects that the meson–

baryon resonances are likely to belong to one of the irreducible representations

in the product of meson and baryon octets. Thus,

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10∗ ⊕ 27. (1.9)

Experimentally, the meson–baryon resonance N∗(1232) (where the number in

the parentheses indicates the mass of the resonance in MeV) is a JP = 3/2+

and T = 3/2 object. The iso-spin assignment implies that the resonance should

belong to either the 10-plet or the 27-plet, with the 10-plet being the simplest

possibility. Indeed, observation of other JP = 3/2+ resonances allows one to fill

in the full 10-plet as shown below. Historically, the existence of Ω− as a missing

piece in the 10-plet was a prediction which was subsequently verified.

JP =
3

2

+

Resonances T Y

N∗ 3

2

1

2

Y ∗ 1 0

Ξ∗ 1

2
−1

2

Ω− 0 −1 (1.10)

In the above, the classification of multiplets as belonging to irreducible repre-

sentations of SU(3) allowed us to make further predictions regarding the nature

of meson–baryon resonances. However, one may ask if the octets of mesons and

baryons are truly fundamental. In 1964, Gell-Mann and Zweig [7–9] proposed

that the mesons and baryons could themselves be composed of something more

fundamental such as particles which belong to the 3-plet representation of SU(3)

(quarks) and their conjugates 3∗ (anti-quarks) with iso-spin and hypercharge

assignments (T )Y as follows:

3 =

(

1

2

)1/6

+ (0)−1/3 (1.11)

3∗ =

(

1

2

)−1/6

+ (0)1/3. (1.12)
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4 A Brief History of Unification

Using the above, one can generate pseudo-scalar meson states so that

3⊗ 3∗ = 1⊕ 8. (1.13)

We can label the quarks u, d, and s with the quantum numbers as follows:

Quark Q T T3 Y

u
2

3

1

2

1

2

1

6

d −1

3

1

2
−1

2

1

6

s −1

3
0 0 −1

3
(1.14)

It is then easily seen that the iso-spin and hypercharge assignments for the

pseudo-scalar meson octet follow directly from the iso-spin and hypercharge

assignments of the 3 and 3∗. Similarly, the baryons can be constructed from

the product of three 3-plets so that

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10. (1.15)

Again, the iso-spin and hypercharge assignment of the octet of baryons follows

from the iso-spin and hypercharge assignment of the quarks.

The above picture, however, causes a problem. In this picture one has mesons

as bound states of quarks and anti-quarks, i.e., qq̄ states while the baryons are

bound states of three quarks, i.e., qqq states. However, qq states and qqqq states

can also form. Thus, qq bound states would appear as fractionally charged par-

ticles but there is no experimental evidence for them. Further, the N∗ which

has J = 3/2 and T = 3/2, contains a doubly charged state N∗++, which can be

thought of as made up of three u quarks, i.e., the state u↑u↑u↑, i.e., with all spins

up. This makes the spin wave function totally symmetric. When coupled with

the fact that N∗++ is the ground state of three quarks, the wave function of the

three quarks becomes totally symmetric – in contradiction with the Fermi–Dirac

statistics. The solution to the problem is offered by the introduction of a hidden

quantum number [10,11], generally known as color. Specifically, we can introduce

a color group SU(3)C whose fundamental representation contains three states,

i.e., states which we can label as red, green, and blue or simply 1, 2, and 3. In this

case we can write N∗++ ∼ ǫabcua(x1)ub(x2)uc(x3), where we have suppressed

the spins. This makes the state consistent with Fermi–Dirac statistics.

Even more central to the development of particle physics are local symmetries,

which appear to be far more fundamental. Local symmetry includes the principle

of gauge invariance, and this principle has played a key role in the development

of theories of particle physics. Examples of these are the Maxwell–Dirac theory,

the Yang–Mills–Dirac theory, and the Einstein theory of gravitation However, a

major weakness of gauge theories is that while the principle of gauge invariance
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A Brief History of Unification 5

determines the self-interactions of the gauge fields and also constraints the inter-

actions of the gauge fields with matter fields, the gauge principle is not strong

enough to determine the nature of matter fields themselves. Thus, consider the

Dirac–Maxwell system described by the Lagrangian

L = −1

4
FµνF

µν −
∑

i

ψ̄i

[

1

i
γµ(∂µ − igQiAµ) +mi

]

ψi. (1.16)

Here, Fµν ≡ ∂µAν − ∂νAµ is the field strength and ψi are spin 1/2 Dirac fields

which carry the U(1) gauge charges Qi. The equation of motion for the gauge

field in this case reads

∂νF
µν = gJµ

Jµ =
∑

i

Qiψ̄iγ
µψi, (1.17)

The principle of gauge invariance determines the interaction of the gauge field

Aµ with the spin half fields ψi but is not powerful enough to determine the

nature and the number of fields or the charges Qi. This turns out to be a major

weakness in our understanding, i.e., we lack a principle that can determine the

type and the number of fields that enter into Eq. (1.16). This problem is per-

sistent and permeates essentially all sectors of particle theory. We consider two

further examples: Yang–Mills theory [12–14] and the Einstein theory. For the

coupled Yang–Mills–Dirac system for a gauge group G with generators Ta which

satisfy the algebraic relation [Ta, Tb] = iCabcTc where Cabc are the structure con-

stants of the gauge group, and Aa
µ are the gauge fields belonging to the adjoint

representation of the gauge group, Eq. (1.17) is replaced by

∂νF
µν
a + gCabcAνbF

µν
c = gJµ

a . (1.18)

Here Fµν
a are the field strengths given by

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gCabcA

b
µA

c
ν , (1.19)

while the source Jµ
a contains the matter fields, and is given by

Jµ
a =

∑

i

Qiψ̄iγ
µTaψi. (1.20)

where ψi are assumed to be spin 1/2 fields which belong to the fundamental

representation of the gauge group. Using Eq. (1.19) in Eq. (1.18), we find that the

Yang–Mills gauge invariance fully determines the self-interactions of the gauge

fields Aa
µ. However, the Yang–Mills gauge invariance does not fully determine

the right-hand side of Eq. (1.18), which is given by Eq. (1.20) and depends on a

number of fields ψi which can be chosen in an arbitrary fashion.

The same problem reappears when we consider gravity described by the Einstein

theory, which is another example of a gauge theory. Here, the analogue of Eq. (1.18)
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6 A Brief History of Unification

is the Einstein field equations, which read

Rαβ − 1

2
gαβR = −κ2Tαβ . (1.21)

Here, Tαβ is the stress tensor, and κ is defined so that

κ ≡
√

8πGN , (1.22)

where GN is Newton’s constant. The Planck mass is defined as the inverse of κ

so that

MPl ≡
√
�c

κ
≃ 2.43× 1018 GeV/c2. (1.23)

Here, the Einstein gauge invariance along with the constraint that no more than

two derivatives appear in the Lagrangian or in the equations of motion com-

pletely determines the left-hand side of Eq. (1.21). However, the right-hand side

of Eq. (1.21) remains undetermined, where a variety of fields including spin 0,

spin 1/2, and spin 1 enter. Thus, the stress tensor Tαβ depends on the num-

ber of quark and lepton generations and the number of Higgs fields, and on the

gauge fields as well as any other matter field that may enter a particle physics

Lagrangian. Again, while the Einstein gauge invariance along with the number

of derivatives constraint is powerful enough to determine the self-interactions of

the gravitational field, it is not powerful enough to fix the number and type of

matter and gauge fields that enter on the right-hand side of Eq. (1.21). This is

a singular weakness of the Einstein theory, as was realized early on by Einstein

himself, who described the gravitational equations as

Similar to a building, one wing of which is made of fine marble, but the other

wing of which is built of low grade wood. [15]

String theory in principle resolves this problem, i.e., the problem of determin-

ing the right-hand side of Eq. (1.21). For a given string model and for a given

vacuum structure, the matter and gauge content can be determined, and thus

the right-hand side of Eq. (1.21) is determined. However, there remains the issue

of too many possibilities from which one unique case which describes our world

must be extracted (for a review of string theory see Green et al. [16, 17]).

Another issue that enters into unification is the problem of mass scales, and

this idea leads us in a new direction. There is empirical evidence that several

mass scales exist in nature. The discovery that the law of reflection symmetry

or parity symmetry is violated in weak interactions [18] led to the emergence

of a two component equation for the neutrino [19–21] and subsequently to the

emergence of the V–A theory of weak interactions [22,23]. Thus, the interactions

of the V–A theory are given by

LW =
GF√
2
Jµ(x)J

µ†(x), (1.24)
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A Brief History of Unification 7

where

Jµ = ℓµ + hµ. (1.25)

Here ℓµ is the current containing leptons so that

ℓµ =
3

∑

i=1

ν̄iγµ(1− γ5)ei, (1.26)

where the sum runs over the e, the μ and the τ generations and hµ in Eq. (1.25)

is the hadronic current, which is given by

hµ =
3

∑

i=1

ūiVij(1− γ5)dj , (1.27)

where Vij is the Cabbibo–Kobayashi–Maskawa mixing matrix [24, 25], and GF

appearing in Eq. (1.24) is the Fermi constant and has the value

G
− 1

2

F ≃ 292.8 GeV. (1.28)

The dimension-six weak interaction operator of Eq. (1.24) is non-renormalizable

and points to a more fundamental theory at the scale G
−1/2
F . Such a theory is the

SU(2)L⊗U(1)Y gauge theory of electroweak interactions [26–28]. The spectrum

of this theory contains in it SU(2)L doublets and singlets of quarks and leptons,

and gauge bosons of the gauge group SU(2)L and U(1)Y , i.e.,

(

νi
ℓi

)

L

, ecLi leptons (1.29)

(

ui

di

)

L

, uc
Li, dcLi quarks (1.30)

(

H+

H0

)

Higgs boson (1.31)

Aµ
α, Bµ SU(2)L, U(1)Y gauge bosons, (1.32)

where α = 1−3. The mystery of the scale G
− 1

2

F is solved as it becomes related to

the vacuum expectation value of the Higgs field H0 such that

G
− 1

2

F = 21/4v

〈H0〉 = v/
√
2. (1.33)

Using Eq. (1.28) one finds

v ≃ 246 GeV. (1.34)

The standard model of electroweak interactions predicts two massive gauge fields,

one of which is charged (W±) and the other is neutral (Z0), whose masses are
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8 A Brief History of Unification

determined in terms of the vacuum expectation value v and the coupling constant

g associated with SU(2)L and the coupling g′ associated with U(1)Y so that

MW± =
1

2
gv,

MZ =
v

2

√

g2 + g′2. (1.35)

The electroweak model has been shown to be renormalizable [29].

While the electroweak model solves the mystery of the Fermi constant, it

creates a mystery of its own in terms of the ratio of the coupling constants g′/g

or sin θW (where θW is the weak angle) defined by

sin θW =
g′

√

g2 + g′2
. (1.36)

Experimentally,

sin2 θW ≃ 0.23. (1.37)

Equation (1.37) has no explanation within the standard model. Indeed, a proper

understanding of it requires us to consider an entirely new regime of physics

involving a mass scale much larger than G
−1/2
F . The mystery of this ratio is

connected as well with the value of the strong interaction coupling αs, which we

now discuss.

Free quarks are not seen as they occur only as bound states within nucleons.

As already discussed, the quarks must carry color, and the simplest hypothesis is

that quarks belong to the triplet representation of SU(3)C . One may thus think

of expanding the gauge group which describes quarks from SU(2)L ⊗ U(1)Y
to SU(3)C ⊗ SU(2)L ⊗ U(1)Y . An entirely unexpected new feature emerges

regarding the group SU(3)C if one assumes that unlike SU(2)L⊗U(1)Y it is not

spontaneously broken but is exactly preserved. In this case, one finds that there

would be eight massless gauge bosons which belong to the adjoint representation

of the SU(3)C gauge group, and they can mediate interactions between colored

quarks. The interaction of the gluons with quarks in this case is given by

Lint = g3
∑

i,a

ψ̄iγ
µTaA

a
µψi, (1.38)

where Ta (a = 1−8) are the generators of the group SU(3)C . Quite remark-

ably, non-abelian gauge theories with the appropriate matter content exhibit

the phenomenon of asymptotic freedom [30, 31] at large energy scales where

the interactions among quarks get weaker and can explain the scaling property

seen in high-energy collisions [32]. On the other hand, at low energy the interac-

tions between quarks become stronger, which explains how quarks are confined

in nucleons. Indeed, the standard model of electroweak and strong interactions

based on the gauge group

SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (1.39)

is one of the most successful models in all of particle physics.
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A Brief History of Unification 9

We now turn to another puzzle which relates to the quantum numbers of

the quarks and the leptons. The left-handed leptons and the quarks have the

following set of SU(3)C , SU(2)L, and U(1)Y quantum numbers:

q

(

3, 2,
1

6

)

, uc

(

3̄, 1, −2

3

)

, dc
(

3̄, 1,
1

3

)

,

L

(

1, 2, −1

2

)

, ec(1, 1, 1), (1.40)

where q and L are the doublets of SU(2)L and uc, dc, and ec are SU(2)L singlets

where we have dropped the subscript L. The assignment of the hypercharges of

the particles in the standard model appears strange on the surface. However,

there is a interesting property that the hypercharges satisfy, which is
∑

i

miCiYi = 0, (1.41)

where mi is the multiplicity which counts the number of states in a multiplet

and Ci are the number of colors and the sum on i runs over the multiplets in the

standard model. This is precisely one of the conditions needed for the cancella-

tion of anomalies. It is known that a cancellation of anomalies (see Chapter 6)

among multiplets which couple to gauge fields is needed for a theory to be an

acceptable quantum field theory [33, 34]. The question then is, if beyond the

standard model there is a larger framework in which an arrangement of colors,

iso-spins, and hypercharges as given in Eq. (1.40) can arise in a natural way. Such

a framework would need to be more unified, and one possibility is an enlarged

gauge group [35,36] which can accommodate the standard model gauge group of

Eq. (1.39). A major step in this direction was taken by Pati and Salam [35], who

proposed the group SU(4)C × SU(2)L × SU(2)R where leptons and quarks are

unified with the leptons arising as the fourth color. SU(4)C ×SU(2)L×SU(2)R,

however, is a product group, and it is interesting to look for a fully unified

group which can accommodate the standard model gauge group. It turns out

that SU(5), which is rank four, is the minimal grand unified group [36] which

can accommodate the gauge group of Eq. (1.39). In SU(5) one needs a combina-

tion of two irreducible representations to accommodate one full generation of the

standard model particles, i.e., one needs the irreducible representations 5̄ ⊕ 10.

The particle content of these is as follows:

5̄L =

⎛

⎜

⎜

⎜

⎜

⎝

dc1
dc2
dc3
e

−νe

⎞

⎟

⎟

⎟

⎟

⎠

L

, 10L =

⎛

⎜

⎜

⎜

⎜

⎝

0 uc
3 −uc

2 −u1 −d1
−uc

3 0 uc
1 −u2 −d2

uc
2 −uc

1 0 −u3 −d3
u1 u2 u3 0 −ec

d1 d2 d3 ec 0

⎞

⎟

⎟

⎟

⎟

⎠

L

. (1.42)

The combination of 5̄ and 10 is anomaly free, and accommodates one full gener-

ation of quarks and leptons. Also, since the electric charge is related to iso-spin

www.cambridge.org/9780521197021
www.cambridge.org


Cambridge University Press
978-0-521-19702-1 — Supersymmetry, Supergravity, and Unification
Pran Nath 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 A Brief History of Unification

and hypercharge by the relation Eq. (1.7), one finds that grand unification pro-

vides an explanation of the quantization of charge, i.e., that the quarks (u, d)

have charges ( 2
3
, − 1

3
) while (νe, e) have charges (0, −1). This can be viewed as

a major triumph of grand unification. One less attractive aspect of SU(5) grand

unification is that one generation of quarks and leptons requires two irreducible

representations, i.e., 5̄⊕10. It is preferable to have just one irreducible represen-

tation where a full generation of quarks and leptons can be accommodated. To do

so would require a higher-rank gauge group. The simplest such possibility is the

gauge group SO(10) [37, 38], which has a 16-dimensional spinor representation

and which decomposes under SU(5) so that

16 = 1⊕ 5̄⊕ 10. (1.43)

Here, 5̄ and 10 accommodate a full generation of quarks and leptons as given in

Eq. (1.42), and in addition one has a singlet field which we may label as νc. Such

a field plays a role in giving mass to the neutrino through the so-called see-saw

mechanism [39]. One can then generate a neutrino mass matrix, which in the

ν, νc basis has the form
(

0 m

m M

)

, (1.44)

where m is size the electroweak scale and M is size the grand unified theory

(GUT) scale. Diagonalization of this mass matrix generates a light neutrino

mass of size m2/M . Assuming m = O(MZ) and M = O(1015−16) GeV, one finds

mν = O(10−2−10−3) eV, which is in the range of desired neutrino masses. Thus,

SO(10) is an attractive grand unification group although it has the drawback

that currently there are a large number of models that one can build using

different Higgs representations to break the grand unification group. In addition,

attempts have been made to build models using groups SU(N), N > 5, and

SO(N) for N > 10 as well as exceptional groups. Among the five exceptional

groups G2, F4, E6, E7, and E8, only E6 has chiral representations, and, further,

it contains SU(5) and SO(10) as subgroups so that

SU(5) ⊂ SO(10) ⊂ E6. (1.45)

One advantage of E6 is that it allows inclusion of Higgs fields along with quarks

and leptons in the same multiplet. But there are also some drawbacks relative

to the SO(10) models.

As seen above, an irreducible representation of the grand unification group

contains both quarks and leptons in the same multiplet. This means that the

quarks can change into leptons by exchange of the so-called lepto-quarks, which

are the gauge bosons of the SU(5), SO(10), or E6 gauge group carrying the quan-

tum numbers of both quarks and leptons. These gauge bosons develop masses

by spontaneous breaking of the grand unified symmetry to the symmetry of the

standard model gauge group. Let us assume that the GUT symmetry breaks
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