
1 Fundamental concepts and physical laws

We begin by discussing the fundamental concepts and the laws of physics that underlie the
formulation of any dynamical analysis of atmospheric problems. We elaborate on how to
conceptualize a fluid medium and how to mathematically quantify the state of a fluid in
Section 1.1. We proceed to review a set of physical laws that govern the behavior of all
disturbances in a dry atmosphere setting, detailing their physical meaning and mathemat-
ical representations in Sections 1.2 through 1.6. The observed distributions of two import-
ant mean characteristics of the atmosphere, namely its stratification and baroclinicity, are
finally examined in Section 1.7.

1.1 Basic notions

1.1.1 Continuum hypothesis

Although the atmosphere may be visualized as a collection of randomly moving gas
molecules in constant collision with one another, we conceptualize it as a fluid when we
make dynamical atmospheric analyses by invoking a continuum hypothesis. We only seek
to quantify the macroscopic properties of the atmosphere. One such property is the wind
defined to be the average velocity of the molecules in a very small volume about each
location. We call such a loosely defined amount of air molecules an atmospheric fluid
parcel. We therefore think of the atmosphere as a fluid medium consisting of innumerable
parcels. Furthermore, we assume that each property of the atmosphere varies continuously
in time and space, whereby we may evaluate their derivatives with respect to the space
variables and time in an analysis.

1.1.2 Lagrangian vs. Eulerian descriptions of a fluid

The fluid in a system can be described in principle in terms of the position of every
one of its innumerably large number of fluid elements. The position may be mea-
sured by its Cartesian coordinates (x tð Þ; y tð Þ; z tð Þ) and its velocity components by
u tð Þ ¼ dx=dt; v tð Þ ¼ dy=dt;w tð Þ ¼ dz=dt at all times. This is known as a Lagrangian
description of a fluid with time being the only independent variable. A fluid element would
deform indefinitely when it is subject to non-uniform stresses. Its shape and size would
change continually making it impossible for us to track its identity for a long time. Hence, it
is not feasible to perform a Lagrangian analysis of a fluid except for a short duration. Amuch
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more convenient means of describing a fluid is to quantify all of its fundamental properties at
a fixed array of points in the domain at all times. We do not concern ourselves with the
identity of the individual fluid parcels that happen to be at various points and time. This is
known as an Eulerian description of a fluid. One fundamental property is the velocity field,
~V � u x; y; z; tð Þ; v x; y; z; tð Þ;w x; y; z; tð Þð Þ, where the independent variables are x; y; z and t.
We will talk about the other fundamental properties shortly.

In a Lagrangian description the rate of change of any property of a fluid parcel, � tð Þ,
in time as it moves about is called a total derivative, D�=Dt. In an Eulerian description, the
rate of change of any property � x; y; z; tð Þ at a fixed point is called a local derivative, @�=@t.
The relationship between these two derivatives is established as follows. Suppose a generic
property of an air parcel in a Lagrangian sense, � x tð Þ; y tð Þ; z tð Þ; tð Þ, changes by d� when its
position has changed by dx; dy; dzð Þ in a time interval dt. They are interrelated by the chain
rule of calculus

d� ¼ @�

@x
dxþ @�

@y
dyþ @�

@z
dzþ @�

@t
dt: ð1:1Þ

The partial derivatives in (1.1) are however in the Eulerian sense. Each of them is to be
determined with the other three of the four independent variables x; y; z; tð Þ fixed. Upon
dividing (1.1) through by dt, we get

D�

Dt
� d�

dt
¼ @�

@x

dx

dt
þ @�

@y

dy

dt
þ @�

@z

dz

dt
þ @�

@t
: ð1:2Þ

This equation relates a Lagrangian description to an Eulerian description of a fluid. A more
compact notation for (1.2) is

D�

Dt
¼ @�

@t
þ V

*

·r�; ð1:3Þ

where ~V ¼ u; v;wð Þ � dx

dt
;
dy

dt
;
dz

dt

� �
, r � @

@x
;
@

@y
;
@

@z

� �
is the grad operator in Cartesian

coordinates. Equation (1.3) can be of course applied in any coordinate system as long as ~V
and r are consistently defined. It is instructive to rewrite (1.3) as

@�

@t
¼ D�

Dt
� V

*

·r�: ð1:4Þ
Equation (1.4) says that:

Local rate of change of � at a point
¼ Rate of change of � in a parcel caused by external processes

D�

Dt

� �
þ Rate of change of � due to the advective process at a point, (� V

*

·r�).
The advective rate of change of � at a point is positive when the velocity at that point

is directed from a region of higher values of � towards a region of lower values of �.
One part of it �u�x � v�y

� �
is called horizontal advection of � and the other part �w�zð Þ

is called vertical advection. The horizontal velocity components of air parcels in a large
atmospheric disturbance are much larger than the vertical component. Those air parcels
move quasi-horizontally. What we can reliably measure with a network of weather
stations is only this component of airflow. It is what we usually call the wind,
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~V2 � u; vð Þ. The advective rate of change in that case is mostly associated with the
horizontal advection. If � stands for zonal velocity, u, then � V

*

·r� � �~V2 ·ru would be
advection of zonal momentum. If � stands for temperature, T , then � V

*

·r� � �~V2 ·rT
would be thermal advection.

1.1.3 Physical laws

Whatever happens in the atmosphere must be compatible with the laws of physics. The
pertinent laws are listed below for quick reference:

• Conservation of Mass asserts that the mass of a fluid element remains unchanged no
matter how it moves and how all its properties change.

• Conservation of Momentum is the underlying principle of Isaac Newton’s three laws of
mechanics. The latter are concerned with how the momentum of an object changes under
the influence of forces.

• Law of Gravitation is a statement of the force acting on an object due to the presence of
another object.

• The forces associated with the momentum exchange between a fluid parcel in contact
with another fluid parcel are described by the notions of pressure and viscosity.

• Equation of State is the identity signature of the fluid medium under consideration.
• Conservation of Energy is the basis of the First Law of Thermodynamics. It quantifies
how one might evaluate the rate of change of temperature of a fluid element in different
circumstances.

• The laws of radiative transfer and phase transition of water in the atmosphere are
approximately incorporated in an indirect manner when we analyze the basic dynamics
of an atmospheric flow if necessary.

The mathematical expressions for these laws of physics take on the form of a complete set
of partial differential equations. The solutions of those equations are very general for they
could describe all classes of disturbances. The different concepts and physical laws are
elaborated in the following sections of this chapter.

1.2 Laws of mechanics

The location and movement of an object are measured in the context of a reference frame.
A special reference frame is an inertial reference frame, which is defined as one that moves
at a constant speed in a certain direction. It follows that there is no unique inertial reference
frame. A special one is absolutely at rest in space at all times. Such a reference frame
presupposes that the notions of absolute space and absolute time are meaningful.

Newton formulated three laws of mechanics in conjunction with the use of an inertial
reference frame. They are:

(1st Law) An object in uniform motion continues to be in the same uniform motion
when it is not under the influence of a net force.

3 1.2 Laws of mechanics
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(2nd Law) When there is a force, ~F, acting upon an object, the latter accelerates at a rate
proportional to the force and inversely proportional to its mass, m,

d~v

dt
¼

~F

m
ð1:5Þ

where~v is velocity in an inertial reference frame.
(3rd Law) If two bodies exert forces upon each other, these forces are equal in magnitude

and opposite in direction. This law is applicable only if the force exerted by one object on
another object is directed along the line connecting the two objects. Two known forces are of
this type: gravitational force between two objects and electrostatic force between two
electric charges. This law is not applicable for a case in which a force is velocity dependent.

Newton’s three laws are in essence three statements concerned with the absolute
momentum of an object defined as

~P ¼ m~v ð1:6Þ
under three different circumstances. The 1st Law effectively says that the absolute momen-
tum of an object conserves in the absence of external force. The 2nd Law effectively says
that absolute momentum of an object under the influence of a force ~F changes in time at a
rate equal to

d~P

dt
¼ ~F: ð1:7Þ

Suppose two objects with absolute momentum ~Pj, j ¼ 1; 2 interact with one another.
According to Newton’s 3rd Law, we have ~F1 ¼ �~F2 where the force acting on body-1
due to body-2 is ~F1 and vice versa is ~F2. Then by using (1.7) we have

d ~P1 þ~P2

� �
dt

¼ 0 ð1:8Þ

which simply means that the total momentum of a composite system would not change as a
consequence of interactions among its members.

In passing, it should be emphasized that the concepts of absolute space and absolute time
are ad hoc notions. Their logical implications are incompatible with the observation that
the velocity of light is the same regardless of the movement of the light source. Einstein’s
special theory of relativity adopts that as a postulate and supersedes Newton’s laws of
mechanics since it accurately governs the movement of objects even in a speed close to the
velocity of light. That theory establishes that the notions of absolute space and absolute
time are superfluous and that space and time are intrinsically related depending on the
motion of the observer. Newton’s theory is nevertheless sufficiently accurate for atmos-
pheric studies since wind speed is negligibly slow compared to the velocity of light.

1.2.1 Inertial vs. non-inertial reference frames

Wind is the movement of air parcels measured relative to a weather station fixed on Earth.
The reference frame for measuring wind is therefore a non-inertial reference frame because

4 Fundamental concepts and physical laws
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the Earth rotates about its own axis and also moves around the Sun. The total movement of
each air parcel as viewed from space is quite complicated indeed. Let us compare the
description of the movement of an object in the absence of any force ~F ¼ 0

� �
in an inertial

reference frame with the description in a non-inertial reference frame. The situation is
depicted in Fig. 1.1. Suppose this object moves at a constant velocity~vp along a straight
line with respect to an observer in an inertial reference frame. Its movement to an observer
in an inertial reference frame is clearly very different to another observer in a reference
frame that moves in an elliptical orbit with a constant speed ~vcj j ¼ ~vp

�� ��. Suppose the
observer is at point B when the object is at point A and would have moved to C when the
object moves to D. The object is momentarily stationary to observer at B as far as he can
tell, ~v ¼~vp �~vc ¼ 0

� �
. Later at location C, the object appears to be moving in the direction

indicated by the arrow, ~v ¼~vp �~vc 6¼ 0
� �

. Hence, this observer concludes that the object
continually accelerates as it moves. It follows that the equation of motion to him is NOT

~F ¼ 0 ¼ d

dt
m~vð Þ where ~v is the velocity with respect to him as the observer. He would

conclude that there must be a force acting on the object if he wishes to use the form of
Newton’s formula (1.5) for analyzing its motion.

1.3 Equations of motion in a rotating reference frame

Since the Earth rotates about its own axis and moves around the Sun, it would be most
convenient to use a non-inertial reference frame fixed on Earth when we analyze atmos-
pheric disturbances. This reference frame rotates once a day. The movement of air parcels

vp

vc

v

A

D

B
C

Fig. 1.1 Depiction of a particle moving in constant velocity along AD in an inertial reference frame and in a non-inertial
reference frame (another observer moving in an elliptical orbit). The particle’s velocity is zero to the second
observer at B and is indicated by an arrow to this observer at C.

5 1.3 Equations of motion in a rotating reference frame
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is measured relative to the surface of the Earth. We will derive in the following subsection
an equation that adequately governs the motion of an air parcel in this framework. It is
written in a vector form applicable to any choice of coordinate system. It takes on the form

of d~v=dtð Þrotating¼ ~F=m� ~O� ~O�~r
� �

� 2~O�~v where ~O is the vector representing

the Earth’s rotation about its own axis,~v is the velocity of the air parcel in this rotating frame,
~r is the position vector of the air parcel from the center of the Earth, m the mass of the air
parcel and ~F the net force acting on the air parcel.

1.3.1 General derivation

By definition, the real forces acting on an air parcel are the same regardless of the particular
reference coordinates adopted in an analysis. So, we only need to transform the expression
of acceleration from an inertial reference frame to a non-inertial reference frame. Without
loss of generality, we use Cartesian coordinates to depict an object in both an inertial frame
and a rotating reference frame as indicated in Fig. 1.2. Let us focus on an air parcel with
mass m at point P. The x0i (i¼ 1,2,3) are the coordinates of an inertial reference frame
according to the right-hand convention. The origin of this inertial reference frame is
arbitrary. The xi are the coordinates of a non-inertial reference frame whose origin is at
the center of the Earth. ~R measures the position of the center of the Earth relative to the
origin of the inertial frame. This non-inertial reference frame is completely general in that

it may move and accelerate,~R
·

� d~R

dt
6¼ 0,~R

··

6¼ 0. It also may rotate about an arbitrary axis

in a varying rate, ~O
·

6¼ 0.

x ′
3

x 3

x ′
1

x1 x2

x ′
2

W

O
R

E

P

r ′

r

Fig. 1.2 The x0i are coordinates of an inertial reference frame; xi are coordinates of a rotating reference frame. E is center
of such reference frame; ~O is the vector representation of the rotation of the reference frame;~R indicates the
position of the origin of the non-inertial frame;~r indicates the position of an object P in the non-inertial frame;
~r 0 indicates the position of the object in the inertial frame.
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The following notations are introduced for the derivation:
~R ¼ position vector for the origin of the rotating system in an inertial (fixed) frame
~ei ¼ unit vectors of the rotating reference frame

~r ¼P3
i¼1

xi~ei ¼ position vector of P in the rotating system

~r 0 ¼ ~Rþ~r ¼ position vector of P in a fixed system
~O ¼P

i
oi~ei ¼ rotation vector of the rotating system.

Then we have

d~r 0

dt

� �
¼ d~R

dt

 !
þ d

dt

X
i

ðxi~eiÞ ¼ d~R

dt

 !
þ
X
i

xi
·
~ei þ

X
i

xi~ei
·
: ð1:9Þ

The relative velocity is d~r=dtð Þrotating ¼
P
i
xi
·
~ei. We make use of two simple properties of

vectors to determine ~ei
·
;

~D ¼ ~E þ~F
� �� ~G ¼ ~E � ~Gþ~F � ~G;

~C ¼ ~A�~B ¼ A2B3 � A3B2ð Þ~e1 þ A3B1 � A1B3ð Þ~e2 þ A1B2 � A2B1ð Þ~e3:
Vector ~C is perpendicular to both ~A and ~B as evidenced by a special case ~e1 �~e2 ¼~e3.
It follows that the change of ~e1 in time arises from two components of ~O: o2 and o3.
The change of~e1 in time �t arising from o3 about the x3 axis (pointing out of the paper) is
�~e1 ¼ o3�t~e2. Likewise, the change of ~e1 in time �t arising from o2 about the x2 axis
(pointing into the paper) is �~e1 ¼ �o2�t~e3. Thus the total rate of change of~e1 is

~e1
· � d~e1

dt
¼ o3~e2 � o2~e3 ¼ ~O�~e1 ¼

~e1 ~e2 ~e3
o1 o2 o3

1 0 0

������
������: ð1:10Þ

Similarly
d~e2
dt

¼ �o3~e1 þ o1~e3
d~e3
dt

¼ o2~e1 � o1~e2:

Thus we have in general vector notation

~ei
· ¼ ~O�~ei; i ¼ 1; 2; 3:

By (1.9), (1.10)

d~r 0

dt

� �
fixed

¼ d~R

dt

 !
fixed

þ d~r

dt

� �
rotating

þ ~O�~r: ð1:11Þ

Equation (1.11) written in a more concise notation is~v 0 ¼ ~R
·

þ~vþ ~O�~r. Taking the time
derivative of (1.11) in the context of the inertial system, we get

d~v 0

dt

� �
fixed

¼ ~R
··

þ d~v

dt

� �
fixed

þ~O
·

�~r þ ~O� d~r

dt

� �
fixed

¼ ~R
··

þ d~v

dt

� �
rotating

þ~O�~vþ ~O
·

�~r þ ~O�~vþ ~O� ~O�~r
� �

: ð1:12Þ

7 1.3 Equations of motion in a rotating reference frame
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According to Newton’s law, the equation of motion for P in an inertial reference frame is

simply
d~v 0

dt

� �
fixed

¼
~F

m
where ~F is the net real force. With the use of (1.12), we can then

write Newton’s equation of motion in a general rotating reference frame as

~F

m
�~R

··

�~O
·

�~r � ~O� ~O�~r
� �

� 2~O�~v �
~Feff

m
¼ d~v

dt

� �
rotating:ðiÞ ðiiÞ ðiiiÞ ðivÞ ðvÞ

ð1:13Þ

Equation (1.13) is written in the same format as that for an inertial reference frame. It
should be emphasized that although Cartesian coordinates are used in the derivation above,
we are now writing the final equation in vector notation. It would need to be written
explicitly for a specific coordinate system in a particular application.

The five terms on the LHS of (1.13) are to be interpreted as “forces” acting on an air parcel.
Since only term (i) represents the real forces by definition, the others are apparent forces,
which stem solely from the use of the non-inertial reference frame under consideration. Their
sum constitutes an effective net force that would give rise to a relative acceleration.

Term (ii) is associated with the sum of the Earth’s movement around the Sun, the Sun’s
movement around the Milky Way, etc. A part of (i) must be responsible for (ii). That is
essentially the net gravitational force from all celestial bodies exerted on the Earth. It must
necessarily cancel (ii). If we neglect (ii) we must not include the gravitational force due to
all celestial bodies except the Earth itself in (i) for consistency.

Term (iii) is proportional to O
·
associated with the precession of the axis of rotation of

the Earth. The orientation of Earth’s rotational axis changes in a cycle of approximately
26 000 years, like a wobbling top. This term is therefore very small compared to (i). There are
additional details concerning the precession of the Earth’s axis.Wewill neglect the precession
of the rotation of the Earth altogether in atmospheric applications and thereby assumeO

· ¼ 0.
Term (iv) is the centrifugal force on the air parcel associated with the rotation of the non-

inertial reference frame. It is in the direction outward normal to the axis of rotation.
Term (v) is called Coriolis force associated with the movement of the air parcel at P as

measured in the rotating reference frame. Its direction is perpendicular to both the rotation
vector and the relative velocity. Its magnitude is proportional to the speed of the object ~vj j
and to twice the rotation rate of the Earth, 2O.

Summing up, we may simplify (1.13) to

~F

m
� ~O� ~O�~r

� �
� 2~O�~v ¼ d~v

dt

� �
rotating

ð1:14Þ

as an adequately accurate equation of motion for any air parcel in atmospheric studies.

1.3.2 Physical nature of the Coriolis force

Although the mathematical derivation of the expression for the Coriolis force in (1.14) is
rigorous, it does not give us a feel for this force from a physical point of view. To develop
a better feel, we re-derive the form of Coriolis force with more elemental but physical
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reasoning in two scenarios. In the first scenario, we consider an air parcel of unit mass
initially at rest at a latitude ’. Its location is at a distance L from the Earth’s axis of rotation.
If its absolute motion synchronizes with the Earth’s rotation, there would be no relative
motion and there would be a radially inward acceleration (known as centripetal acceler-
ation). A change of its sign can be reinterpreted as a force in a radially outward direction
acting on the air parcel (known as centrifugal force, ~Fcen). This is the force required to
sustain it at this location in a rotating coordinate. For convenience, we will make use of two
different coordinate systems in the following discussion. We will consider two scenarios in
which the air parcel is set to simple motion. We first describe what happens in a polar-
cylindrical coordinate system ð~i;~d;~aÞ where~i is a unit vector pointing eastward, ~d a unit
vector pointing away from the Earth’s axis of rotation, and~a a unit vector directed along the
rotation axis. The rotation vector of the Earth is then ~O ¼ O~a. The initial position vector of
the air parcel can be designated by~L ¼ L~d. Its absolute velocity is ~V ¼ ~O�~L ¼ OL~i in the
azimuthal direction and its centripetal acceleration is ~O� ~V ¼ �O2L~d pointing towards
the axis of rotation. The centrifugal force is then~Fcen ¼ O2L~d. The mathematical expression
for the angular momentum, ~A, of this air parcel is

~A ¼~L� ~V ¼ OL2~a; ð1:15Þ
where ~A is a vector in the direction of the rotation axis with a magnitude equal to the
product of the tangential velocity about the axis of rotation and the distance from the axis
(moment of momentum). According to Newton’s law, the angular momentum ~A of the air
parcel would not change in time if it is not acted upon by an external torque. The
configuration is depicted in Fig. 1.3.

Ld

Wa

Aa

ui

Fig. 1.3 Schematic of an air parcel on a meridional plane in the atmosphere. The Earth’s rotation vector, position vector,
relative zonal velocity and absolute angular momentum of the parcel are denoted by O~a, L~d, u~i and A~a
respectively;~i is a unit vector pointing into the plane.
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Suppose the air parcel is somehow displaced infinitesimally outward to a distance
Lþ �L in a short time interval �t. We want to deduce what might be the consequence of
this displacement. Since no torque is required for this displacement, its absolute angular
momentum would not change. This implies a change in its azimuthal (zonal) velocity, �u,
since its distance from the axis has changed:

A~að Þinitial ¼ A~að Þlater
OL2~a ¼ Lþ �Lð Þ~d � O Lþ �Lð Þ þ �uð Þ~i

¼ OL2 þ 2OL �Lþ L �uþ �L �u
� �

~a: ð1:16Þ
For an infinitesimal displacement, the product term �L�u would be negligibly smaller than
other terms. Then it follows

�u ¼ �2O �L: ð1:17Þ
Equation (1.17) says that if an air parcel is displaced outward from the axis of rotation,
it would necessarily move to the west, �u < 0. This movement would be observable as a
zonal velocity in a rotating reference frame. This relation is analogous to an ice skater who
could slow down his spinning motion by stretching his arms outward.

Now let us represent this radial displacement in a local Cartesian coordinate system
with its origin collocated at the air parcel. ~i;~j;~k

� �
are the unit vectors. The result is

�L~d ¼ �y~jþ �z~k (Fig. 1.4; �y would have a negative value in this case). The contribution to
(1.17) from �L comes from two parts: �L1 ¼ ��y sin’ and �L2 ¼ �z cos’ where ’ is the
latitude. The contributions to �u induced by the two parts of �L are additive. Thus, (1.17)
may be written as

�u ¼ 2O sin’ �y� 2O cos’ �z: ð1:18Þ

Aa

Ld
idu

ddL

y z

W

Fig. 1.4 Schematic of a displaced air parcel on a meridional plane in the atmosphere.
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