
1 Stress and Strain

Introduction

This book is concerned with the mechanical behavior of materials. The term
mechanical behavior refers to the response of materials to forces. Under load, a
material may either deform or break. The factors that govern a material’s resistance
to deforming are quite different than those governing its resistance to fracture. The
word strength may refer either to the stress required to deform a material or to
the stress required to cause fracture; therefore, care must be used with the term
strength.

When a material deforms under small stresses, the deformation may be elastic.
In this case, when the stress is removed, the material will revert to its original shape.
Most of the elastic deformation will recover immediately. There may be, however,
some time-dependent shape recovery. This time-dependent elastic behavior is called
anelasticity or viscoelasticity.

Larger stresses may cause plastic deformation. After a material undergoes plas-
tic deformation, it will not revert to its original shape when the stress is removed.
Usually, high resistance to deformation is desirable so that a part will maintain its
shape in service when stressed. However, it is desirable to have materials deform
easily when forming them by rolling, extrusion, and so on. Plastic deformation usu-
ally occurs as soon as the stress is applied. At high temperatures, however, time-
dependent plastic deformation called creep may occur.

Fracture is the breaking of a material into two or more pieces. If fracture occurs
before much plastic deformation occurs, we say the material is brittle. In contrast, if
there has been extensive plastic deformation preceding fracture, the material is con-
sidered ductile. Fracture usually occurs as soon as a critical stress has been reached;
however, repeated applications of a somewhat lower stress may cause fracture. This
is called fatigue.

The amount of deformation that a material undergoes is described by strain.
The forces acting on a body are described by stress. Although the reader should
already be familiar with these terms, they will be reviewed in this chapter.
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2 Mechanical Behavior of Materials

Stress

Stress, σ , is defined as the intensity of force at a point.

σ = ∂ F/∂ A as ∂ A → 0. (1.1a)

If the state of stress is the same everywhere in a body,

σ = F/A. (1.1b)

A normal stress (compressive or tensile) is one in which the force is normal
to the area on which it acts. With a shear stress, the force is parallel to the area
on which it acts. Two subscripts are required to define a stress. The first subscript
denotes the normal to the plane on which the force acts, and the second subscript
identifies the direction of the force.∗ For example, a tensile stress in the x-direction
is denoted by σxx indicating that the force is in the x-direction and it acts on a plane
normal to x. For a shear stress, σxy, a force in the y-direction acts on a plane normal
to x.

Because stresses involve both forces and areas, they are not vector quantities.
Nine components of stress are needed to fully describe a state of stress at a point, as
shown in Figure 1.1. The stress component, σyy = Fy/Ay, describes the tensile stress
in the y-direction. The stress component, σzy = Fy/Az, is the shear stress caused by
a shear force in the y-direction acting on a plane normal to z.

Repeated subscripts denote normal stresses (e.g., σxx, σyy), whereas mixed sub-
scripts denote shear stresses (e.g., σxy, σzx). In tensor notation, the state of stress is
expressed as

σij =
∣∣∣∣∣∣
σxx σyx σzx

σxy σyy σzy

σxz σyz σzz

∣∣∣∣∣∣ (1.2)

where i and j are iterated over x, y, and z. Except where tensor notation is required,
it is often simpler to use a single subscript for a normal stress and to denote a shear
stress by τ :

σx = σxx, and τxy = σxy. (1.3)

A stress component expressed along one set of axes may be expressed along
another set of axes. Consider the case in Figure 1.2. The body is subjected to a stress

x

y

z

σyz

σzy

σzz

σyx

σzx

σyy

σxy

σxz

σxx

Figure 1.1. Nine components of stress acting on an infinitesimal
element. Normal stress components are σxx, σyy, and σzz. Shear
stress components are σyz, σzx, σxy. σzy, σxz, and σyx.

∗ Use of the opposite convention should not cause confusion because σij = σji.
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Stress and Strain 3

Figure 1.2. Stresses acting on an area, Ay′ , under a normal force, Fy.
The normal stress, σy′y′ = Fy′/Ay′ = Fy cos θ/(Ay/ cos θ) = σyy cos2 θ .
The shear stress, τy′x′ = Fx/Ay′ = Fy sin θ/(Ayx/ cos θ) = σyy cos θ sin θ .

σyy = Fy/Ay. It is possible to calculate the stress acting on a plane whose nor-
mal, y′, is at an angle θ to y. The normal force acting on the plane is Fy′ = Fy cos θ ,
and the area normal to y′ is Ay/ cos θ , so

σy′ = σy′y′ = Fy′/Ay′ = (Fy cos θ)/(Ay /cos θ) = σy cos2θ. (1.4a)

Similarly, the shear stress on this plane acting in the x′-direction, τy′x′(= σy′x′), is
given by

τy′x′ = σy′x′ = Fx′/Ay′ = (Fy sin θ)/(Ay/ cos θ) = σy cos θ sin θ. (1.4b)

Note: The transformation requires the product of two cosine and/or sine terms.

Sign Convention

When we write σij = Fi/Aj, the term σij is positive if i and j are either both positive
or both negative. However, the stress component is negative for a combination of i
and j in which one is positive and the other is negative. For example, in Figure 1.3,
the terms σxx are positive on both sides of the element because both the force and
normal to the area are negative on the left and positive on the right. The stress, τyx,
is negative because on the top surface y is positive and x-direction force is negative,
and on the bottom surface, x-direction force is positive and the normal to the area,
y, is negative. Similarly, τxy is negative.

Pairs of shear stress terms with reversed subscripts are always equal. A moment
balance requires that τij = τji. If they were not, the element would undergo an
infinite rotational acceleration (Figure 1.4). For example, τyx = τxy. Therefore, we

σxx > 0

y

x

τxy < 0

τyx < 0

Figure 1.3. The normal stress, σxx, is positive because the direction of the force, Fx, and the
normal to the plane are either both positive (right) or both negative (left). The shear stresses,
τxy and τyx, are negative because the direction of the force and the normal to the plane have
opposite signs.
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4 Mechanical Behavior of Materials

τxy

τxy

τyx
τyx

A

Figure 1.4. An infinitesimal element under shear stresses, τxy and τyx.
A moment balance about A requires that τxy = τyx.

can write, in general, that �MA = τyx = τxy = 0, so

σij = σji, or τij = τji. (1.5)

This makes its stress tensor symmetric about the diagonal.

Transformation of Axes

Frequently, we must change the axis system on which a stress state is expressed. For
example, we may want to find the shear stress on a slip system from the external
stresses acting on a crystal. Another example is finding the normal stress across
a glued joint in a tube subjected to tension and torsion. In general, a stress state
expressed along one set of orthogonal axes (e.g., m, n, and p) may be expressed
along a different set of orthogonal axes (e.g., i, j, and k). The general form of the
transformation is

σij =
3∑

n=1

3∑
m=1

�im�jnσmn. (1.6)

The term, �im, is the cosine of the angle between the i and m axes, and �jn is the
cosine of the angle between the j and n axes. The summations are over the three
possible values of m and n, namely, m, n, and p. This is often written as

σij = �im�jnσmn, (1.7)

with the summation implied. The stresses in the x, y, z coordinate system in Fig-
ure 1.5 may be transformed onto the x′, y′, z′ coordinate system by

σx′x′ = �x′x�x′xσxx + �x′y�x′xσyx + �x′z�x′xσzx

+ �x′x�x′yσxy + �x′y�x′yσyy + �x′z�x′yσzy

+ �x′x�x′zσxz + �x′y�x′zσyz + �x′z�x′zσzz (1.8a)

and

σx′y′ = �x′x�y′xσxx + �x′y�y′xσyx + �x′z�y′xσzx

x

y

z

x′

y′

z′

Figure 1.5. Two orthogonal coordinate systems, x, y, and z and x′, y′, and z′.
The stress state may be expressed in terms of either.
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Stress and Strain 5

+ �x′x�y′yσxy + �x′y�y′yσyy + �x′z�y′yσzy

+ �x′x�y′zσxz + �x′y�y′zσyz + �x′z�y′zσzz. (1.8b)

These equations may be simplified with the notation in equation (1.3) using
equation (1.5),

σx′ = �x′x2σx + �x′y2σy + �x′z2σz

+ 2�x′y�x′zτyz + 2�x′z�x′xτzx + 2�x′x�x′yτxy (1.9a)

and

τx′z′ = �x′x�y′xσxx + �x′y�y′yσyy + �x′z�y′zσzz

+ (�x′y�1y′z + �x′z�y′y)τyz + (�x′z�y′x + �x′x�y′z)τzx

+ (�x′x�y′y + �x′y�y′x)τxy. (1.9b)

Now reconsider the transformation in Figure 1.2. Using equations (1.9a) and (1.9b),
with σyy as the only finite term on the x, y, z axis system,

σy′ = � 2
y′yσyy = σy cos2θ and τx′y′ = �x′y�y′yσyy = σy cos θ sin θ (1.10)

in agreement with equations 1.4a and 1.4b. These equations can be used together
with Miller indices for planes and direction indices for crystals. The reader that is
not familiar with these is referred to Appendix I.

EXAMPLE PROBLEM 1.1: A cubic crystal is loaded with a tensile stress of 2.8 MPa
applied along the [210] direction, as shown in Figure 1.6. Find the shear stress
on the (111) plane in the [101] direction.

Solution: In a cubic crystal, the normal to a plane has the same indices as the
plane, so the normal to (111) is [111]. Also, in a cubic crystal, the cosine of the
angle between two directions is given by the dot product of unit vectors in those

Figure 1.6. A crystal stressed in tension along [210] showing the (111) slip
plane and the [101] slip direction.
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6 Mechanical Behavior of Materials

directions. For example, the cosine of the angle between [u1v1w1] and [u2v2w2]
is equal to (u1u2 + v1v2 + w1w2)/[(u2

1 + v2
1 + w2

1)(u2
2 + v2

2 + w2
2)]1/2. Designa-

ting [210] as x, [101] as d, and [111] as n, τnd = �nx�dxσxx = {(2 · 1 + 1 · 1 + 0)/√
[(22 + 12 + 0)(12 + 12 + 12)]} · {(2 · 1 + 1 · 0 + 0 · 0)/

√
[(22 + 12 + 0)(12 + 0 +

12)]}2.8 MPa = 2.8(6/5)
√

6 = 1.372 MPa.

Principal Stresses

It is always possible to find a set of axes (1, 2, 3) along which the shear stress com-
ponents vanish. In this case, the normal stresses, σ1, σ2, and σ3, are called principal
stresses, and the 1, 2, and 3 axes are the principal stress axes. The magnitudes of the
principal stresses, σp, are the three roots of

σ 3
p − I1σ

2
p − I2σp − I3 = 0, (1.11)

where

I1 = σxx + σyy + σzz,

I2 = σ 2
yz + σ 2

zx + σ 2
xy − σyyσzz − σzzσxx − σxxσyy,

I3 = σxxσyyσzz + 2σyzσzxσxy − σxxσ
2
yz − σyyσ

2
zx − σzzσ

2
xy.

(1.12)

The first invariant, I1 = −p/3, where p is the pressure. I1, I2, and I3 are independent
of the orientation of the axes and are therefore called stress invariants. In terms of
the principal stresses, the invariants are

I1 = σ1 + σ2 + σ3,

I2 = −σ22σ33 − σ33σ11 − σ11σ22,

I3 = σ11σ22σ33. (1.13)

EXAMPLE PROBLEM 1.2: Find the principal stresses in a body under the stress
state, σx = 10, σy = 8, σz = −5, τyz = τzy = 5, τzx = τxz = −4, and τxy = τyx =
−8, where all stresses are in MPa.

Solution: Using equation (1.13), I1 = 10 + 8 − 5 = 13, I2 = 52 + (−4)2 +
(−8)2 − 8(−5) − (−5)10 − 10 · 8 = 115, I3 = 10 × 8(−5) + 2 × 5(−4)(−8) −
10 × 52 − 8(−4)2 − (−5)(−8)2 = −138.

Solving equation (1.11), σ 3
p − 13σ 2

p − 115σp + 138 = 0, σp = 1.079, 18.72,
–6.82.

Mohr’s Stress Circles

In the special case where there are no shear stresses acting on one of the reference
planes (e.g., τzy = τzx = 0), the normal to that plane, z, is a direction of principal
stress, and the other two principal stress directions lie in the plane. This is illus-
trated in Figure 1.7. For these conditions, �x′z = �y′z = 0, τzy = τzx = 0, �x′x = �y′y =
cosf, and �x′y = −�y′x = sin φ. The variation of the shear stress component, τx′ y′ ,
can be found by substituting these conditions into the stress transformation equa-
tion (1.8b). Substituting �x′z = −�y′z = 0,

τx′y′ = cos φ sin φ(−σxx + σyy) + (cos2
φ − sin2φ)τxy. (1.14a)
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Stress and Strain 7

Figure 1.7. Stress state to which Mohr’s circle treatment applies. Two shear stresses, τyz and
τzx, are zero.

Similar substitution into the expressions for σx′ and σy′ results in

σx′ = cos2 φσx + sin2 φσy + 2 cos φ sin φτxy. (1.14b)

and

σy′ = sin2 φσx + cos2 φσy + 2 cos φ sin φτxy. (1.14c)

These can be simplified by substituting the trigonometric identities, sin 2φ =
2 sin φ cos φ and cos 2φ = cos2 φ − sin2 φ,

τx′y′ = −[(σx − σy)/2] sin 2φ + τxycos 2φ (1.15a)

σx′ = (σx + σy)/2 + [σx − σy)/2] cos 2φ + τxy sin 2φ. (1.15b)

and

σy′ = (σx + σy)/2 − [σx − σy)/2] cos 2φ + τxy sin 2φ. (1.15c)

Setting τx′y′ = 0 in equation 1.15a, becomes the angle, θ , between the principal
stresses axes and the x and y axes. See Figure 1.8. τx′y′ = 0 = sin 2θ(σx − σy)/
2 + cos 2θτxy or

tan 2θ = τxy/[(σx − σy)/2]. (1.16)

(σ
1
 +

 σ
2
)/
2

(σx - σy)/2

2θ
σ

τ

σ1
σ2

(σx + σy)/2

y

x

1

θ

a b

τxy

σx

σy

Figure 1.8. Mohr’s circles for stresses
showing the stresses in the x-y plane.
Note: The 1-axis is rotated counterclock-
wise from the x-axis in real space (a),
whereas in the Mohr’s circle diagram,
the 1-axis is rotated clockwise from the
x axis (b).
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8 Mechanical Behavior of Materials

The principal stresses, σ1 and σ2, are the values of σx′ and σy′ for this value of φ,

σ1,2 = (σx + σy)/2 ± [σx − σy)/2] cos 2θ + τxy sin 2θ or
σ1,2 = (σx + σy)/2 ± (1/2)[(σx − σy)2 + 4τxy2 ]1/2 (1.17)

A Mohr’s circle diagram is a graphical representation of equations (1.16) and
(1.17). It plots as a circle with a radius (σ1 − σ2)/2 centered at

(σ1 + σ2)/2 = (σx + σy)/2, (1.17a)

as shown in Figure 1.8. The normal stress components, σ , are represented on the
ordinate and the shear stress components, τ , on the abscissa. Consider the triangle
in Figure 1.8b. Using the Pythagorean theorem, the hypotenuse,

(σ1 − σ2)/2 =
{

[(σx + σy)/2]2 + τ 2
xy

}
,1/2 (1.17b)

and

tan(2θ) = [τxy/[(σx + σy)/2]. (1.17c)

The full three-dimensional stress state may be represented by three Mohr’s cir-
cles (Figure 1.9).

The three principal stresses, σ1, σ2, and σ3, are plotted on the horizontal axis.
The circles connecting these represent the stresses in the 1–2, 2–3, and 1–3 planes.
The largest shear stress may be either (σ1 − σ2)/2, (σ2 − σ3)/2, or (σ1 − σ3)/2.

EXAMPLE PROBLEM 1.3: A body is loaded under stresses, σx = 150 MPa, σy =
60 MPa, τxy = 20 MPa, σz = τyz = τzx = 0. Find the three principal stresses,
sketch the three-dimensional Mohr’s circle diagram for this stress state, and find
the largest shear stress in the body.

Solution: σ1, σ2 = (σx + σy)/2 ± {[(σx − σy)/2]2 + τ 2
xy}1/2 = 154.2, 55.8 MPa,

σ3 = σz = 0. Figure 1.10 is the Mohr’s circle diagram. Note that the largest
shear stress, τmax = (σ1 − σ3)/2 = 77.1 MPa, is not in the 1–2 plane.

Figure 1.9. Three Mohr’s circles representing a stress state in
three dimensions. The three circles represent the stress states
in the 2–3, 3–1, and 1–2 planes.
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Stress and Strain 9

Figure 1.10. Mohr’s circles for example problem 1.3.

Strains

An infinitesimal normal strain is defined as strain by the change of length, L, of a
line:

dε = dL/L. (1.18)

Integrating from the initial length, Lo, to the current length, L,

ε =
∫

dL/L = ln(L/Lo). (1.19)

This finite form is called true strain (or natural strain, or logarithmic strain). Alter-
natively, engineering or nominal strain, e, is defined as

e = 
L/Lo. (1.20)

If the strains are small, then engineering and true strains are nearly equal. Express-
ing ε = ln(L/Lo) = ln(1 + e) as a series expansion, ε = e − e2/2 + e3/3! . . . so as
e → 0, ε → e. This is illustrated in example problem 1.4.

EXAMPLE PROBLEM 1.4: Calculate the ratio of e/ε for several values of e.

Solution: e/ε = e/ ln(1 + e). Evaluating:

for e = 0.001, e/ε = 1.0005;
for e = 0.01, e/ε = 1.005;
for e = 0.02, e/ε = 1.010;
for e = 0.05, e/ε = 1.025;
for e = 0.10, e/ε = 1.049;
for e = 0.20, e/ε = 1.097;
for e = 0.50, e/ε = 1.233.

Note that the difference e and ε between is about 1% for e < 0.02.

There are several reasons that true strains are more convenient than engineering
strains.

1. True strains for equivalent amounts of deformation in tension and compression
are equal except for sign.
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10 Mechanical Behavior of Materials

2. True strains are additive. For a deformation consisting of several steps, the over-
all strain is the sum of the strains in each step.

3. The volume change is related to the sum of the three normal strains. For con-
stant volume, εx + εy + εz = 0.

These statements are not true for engineering strains, as illustrated in the following
examples.

EXAMPLE PROBLEM 1.5: An element 1 cm long is extended to twice its initial
length (2 cm) and then compressed to its initial length (1 cm).

A. Find true strains for the extension and compression.
B. Find engineering strains for the extension and compression.

Solution:

A. During the extension, ε = ln(L/Lo) = ln 2 = 0.693, and during the com-
pression,

ε = ln(L/Lo) = ln(1/2) = −0.693.

B. During the extension, e = 
L/Lo = 1/1 = 1.0, and during the compression,

e = 
L/Lo = −1/2 = −0.5.

Note that with engineering strains, the magnitude of strain to reverse the shape
change is different.

EXAMPLE PROBLEM 1.6: A bar 10 cm long is elongated by (1) drawing to 15 cm,
and then (2) drawing to 20 cm.

A. Calculate the engineering strains for the two steps, and compare the sum of
these with the engineering strain calculated for the overall deformation.

B. Repeat the calculation with true strains.

Solution:

A. For step 1, e1 = 5/10 = 0.5; for step 2, e2 = 5/15 = 0.333. The sum of these
is 0.833, which is less than the overall strain, etot = 10/10 = 1.00

B. For step 1, ε1 = ln(15/10) = 0.4055; for step 2, ε1 = ln(20/15) = 0.2877.
The sum is 0.6931, and the overall strain is εtot = ln(15/10) + ln(20/15) =
ln(20/10) = 0.6931.

EXAMPLE PROBLEM 1.7: A block of initial dimensions Lx0, Ly0, Lz0 is deformed
so that the new dimensions are Lx, Ly, Lz. Express the volume strain, ln(V/Vo),
in terms of the three true strains, εx, εy, εz.

Solution: V/Vo = LxLyLz/(Lxo LyoLzo), so

ln(V/Vo) = ln(Lx/Lxo) + ln(Ly/Lyo) + ln(Lz/Lzo) = εx + εy + εz.

Note that if there is no volume change, (ln(V/Vo) = 0), the sum of the normal
strains

εx + εy + εz = 0.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19569-0 - Mechanical Behavior of Materials: Second Edition
William F. Hosford
Excerpt
More information

http://www.cambridge.org/9780521195690
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9780521195690: 


