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The electronic structure of ideal graphene

1.1 The carbon atom

Carbon is the sixth element in the Periodic Table. It has two stable isotopes,
12C (98.9% of natural carbon) with nuclear spin I¼ 0 and, thus, nuclear

magnetic moment mn¼ 0, and 13C (1.1% of natural carbon) with I¼ 1
2 and

mn¼ 0.7024mN (mN is the nuclear magneton), see Radzig & Smirnov (1985).

Like most of the chemical elements, it originates from nucleosynthesis in stars

(for a review, see the Nobel lecture by Fowler (1984)). Actually, it plays a

crucial role in the chemical evolution of the Universe.

The stars of the first generation produced energy only by proton–proton

chain reaction, which results in the synthesis of one a-particle (nucleus 4He)

from four protons, p. Further nuclear fusion reactions might lead to the

formation of either of the isotopes 5He and 5Li (pþ a collisions) or of 8Be

(aþ a collisions); however, all these nuclei are very unstable. As was first

realized by F. Hoyle, the chemical evolution does not stop at helium only due

to a lucky coincidence – the nucleus 12C has an energy level close enough to

the energy of three a-particles, thus, the triple fusion reaction 3a! 12C, being

resonant, has a high enough probability. This opens up a way to overcome

the mass gap (the absence of stable isotopes with masses 5 and 8) and provides

the prerequisites for nucleosynthesis up to the most stable nucleus, 56Fe;

heavier elements are synthesized in supernova explosions.

The reaction 3a! 12C is the main source of energy for red giants. Carbon

plays also an essential role in nuclear reactions in stars of the main sequence

(heavier than the Sun) via the so-called CNO cycle.

The carbon atom has six electrons, two of them forming a closed 1s2 shell

(helium shell) and four filling 2s and 2p states. The ground-state atomic

configuration is 2s2 2p2, with the total spin S¼ 1, total orbital moment L¼ 1

and total angular moment J¼ 0 (the ground-state multiplet 3P0). The first
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excited state, with a J¼ 1, 3P1 multiplet, has the energy 16.4 cm�1� 2 meV

(Radzig & Smirnov, 1985), which gives an estimate of the strength of the

spin–orbit coupling in the carbon atom. The lowest-energy state, with configur-

ation 2s1 2p3, has the energy 33735.2 cm�1� 4.2 eV (Radzig & Smirnov, 1985),

so this is the promotion energy for exciting a 2s electron into a 2p state. At first

sight, this wouldmean that carbon should always be divalent, due to there being

two2p electronswhile the 2s electrons are chemically quite inert. This conclusion

is, however, wrong. Normally, carbon is tetravalent, due to a formation of

hybridized sp electron states, according to the concept of ‘resonance’ developed

by L. Pauling (Pauling, 1960; Eyring, Walter & Kimball, 1946).

When atoms form molecules or solids the total energy decreases due to

overlap of the electron wave functions at various sites and formation of

molecular orbitals (in molecules), or energy bands (in solids); for a compact

introduction to chemical bonding in solids, see Section 1.7 in Vonsovsky &

Katsnelson (1989). This energy gain can be sufficient to provide the energy

which is necessary to promote a 2s electron into a 2p state in the carbon atom.

In order to maximize the energy gained during the formation of a covalent

bond, the overlap of the wave functions with those at neighbouring atoms

should also be maximal. This is possible if the neighbouring atoms are situated

in such directions from the central atoms that the atomic wave functions

take on maximum values. The larger these values are the stronger the bond is.

There are four basis functions corresponding to the spherical harmonics

Y0;0ðW;jÞ ¼ 1ffiffiffiffiffiffi
4p
p ;

Y1;0ðW;jÞ ¼ i

ffiffiffiffiffiffi
3

4p

r
cos W;

Y1;�1ðW;jÞ ¼ �i
ffiffiffiffiffiffi
3

8p

r
sinW expð�ijÞ;

ð1:1Þ

where W and j are polar angles. Rather than take the functions Y1,m(W, j) to
be the basis functions, it is more convenient to choose their orthonormalized

linear combinations of the form

iffiffiffi
2
p ½Y1;1ðW;jÞ � Y1;�1ðW;jÞ� ¼

ffiffiffiffiffiffi
3

4p

r
sinW cosj;

iffiffiffi
2
p ½Y1;1ðW;jÞ þ Y1;�1ðW;jÞ� ¼

ffiffiffiffiffiffi
3

4p

r
sinW sinj;

�iY1;0ðW;jÞ ¼
ffiffiffiffiffiffi
3

4p

r
cosW;

ð1:2Þ
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which are transformed under rotations as the Cartesian coordinates x, y and z,

respectively. Recall that the radial components of the s and p functions in

the simplest approximation are equal in magnitude and may be omitted,

together with the constant factor 1=
ffiffiffiffiffiffi
4p
p

, which is not important here. Then

the angular dependence of the four basis functions which we will introduce in

lieu of Yl,m(W, j) can be represented as

jsi ¼ 1;

jxi ¼ ffiffiffi
3
p

sinW cosj; jyi ¼ ffiffiffi
3
p

sin W sinj; jzi ¼ ffiffiffi
3
p

cosW:
ð1:3Þ

We now seek linear combinations of the functions (1.3) that will ensure

maximum overlap with the functions of the adjacent atoms. This requires

that the value of a¼max
W;j

c be a maximum. With the normalization that

we have chosen, a=1 for the s states and a¼ ffiffiffi
3
p

for the p functions of jxi,
jyi and jzi. We then represent the function jci as

jci ¼ ajsi þ b1jxi þ b2jyi þ b3jzi; ð1:4Þ
where a and bi are real-valued coefficients that satisfy the normalization

condition

a2 þ b21 þ b22 þ b23 ¼ 1: ð1:5Þ
The function jci, then, is normalized in the same way as (1.3). This follows

from their mutual orthogonality,ð
dojcðW;jÞj2 � hcjci ¼ a2hsjsi þ b21hxjxi þ b22hyjyi þ b23hzjzi ¼ 4p;

with do being an element of solid angle. For the time being, the orientation of

the axes in our case is arbitrary.

Let us assume that in one of the functions c, for which a is a maximum,

this maximum value is reached in the direction along the diagonal of the cube

(1, 1, 1), with the carbon atom at its centre and with the coordinate axes

parallel to its edges (Fig. 1.1). Then b1¼ b2¼ b3¼ b. The (1, 1, 1) direction is

given by angles W and j such that

sinj ¼ cosj ¼ 1ffiffiffi
2
p ; cos W ¼ 1ffiffiffi

3
p ; sin W ¼

ffiffiffi
2

3

r
;

so that

jxi ¼ jyi ¼ jzi ¼ 1:

In addition,

a ¼ aþ 3b ¼ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� a2Þ

q
; ð1:6Þ
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where we have used the conditions (1.3). The maximum of a as a function of a

is reached for a¼ 1
2 and is equal to 2. The quantity b in this case is equal to 1

2.

Thus the first orbital with maximum values along the coordinate axes that we

have chosen is of the form

j1i ¼ 1

2
ðjsi þ jxi þ jyi þ jziÞ: ð1:7Þ

It can be readily shown that the functions

j2i ¼ 1

2
ðjsi þ jxi � jyi � jziÞ;

j3i ¼ 1

2
ðjsi � jxi þ jyi � jziÞ;

j4i ¼ 1

2
ðjsi � jxi � jyi þ jziÞ

ð1:8Þ

correspond to the same value a=2. The functions jii (i=1, 2, 3, 4) are

mutually orthogonal. They take on their maximum values along the (1, 1, 1),

ð1; �1; �1Þ, ð�1; 1; �1Þ and ð�1; �1; 1Þ axes, i.e., along the axes of the tetrahedron, and,
therefore, the maximum gain in chemical-bonding energy corresponds to the

tetrahedral environment of the carbon atom. In spite of being qualitative, the

treatment that we have performed above nevertheless explains the character

of the crystal structure of the Periodic Table group-IV elements (diamond-

type lattice, Fig. 1.2) as well as the shape of the methane molecule, which is

very close to being tetrahedral.

Z

Y

X

(–1,1,–1)

(1,–1,–1)

(–1,–1,1)

(1,1,1)

Fig. 1.1. Directions of sp3 chemical bonds of the carbon atom.
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The wave functions (1.7) and (1.8) correspond to a so-called sp3 state of the

carbon atom, for which all chemical bonds are equivalent. Another option is

that three sp electrons form hybrid covalent bonds whereas one p electron has

a special destiny, being distributed throughout the whole molecule (benzene)

or the whole crystal (graphite or graphene). If one repeats the consideration

above for a smaller basis including only functions jsi, jxi and jyi one finds the
following functions corresponding to the maximum overlap (Eyring, Walter &

Kimball, 1946):

j1i ¼ 1ffiffiffi
3
p ðjsi þ

ffiffiffi
2
p
jxiÞ;

j2i ¼ 1ffiffiffi
3
p jsi � 1ffiffiffi

6
p jxi þ 1ffiffiffi

2
p jyi;

j3i ¼ 1ffiffiffi
3
p jsi � 1ffiffiffi

6
p jxi � 1ffiffiffi

2
p jyi:

ð1:9Þ

The corresponding orbits have maxima in the xy-plane separated by angles of

120�. There are called s bonds. The last electron with the p orbital perpendicular

to the plane (jzi function) forms a p bond. This state (sp2) is therefore character-

ized by threefold coordination of carbon atoms, in contrast with fourfold

coordination for the sp3 state. This is the case of graphite (Fig. 1.3).

1.2 p States in graphene

Graphene has a honeycomb crystal lattice as shown in Fig. 1.4(a). The Bravais

lattice is triangular, with the lattice vectors

Fig. 1.2. Chemical bonds in the diamond structure.
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~a1 ¼ a

2
ð3;

ffiffiffi
3
p
Þ; ~a2 ¼ a

2
ð3;�

ffiffiffi
3
p
Þ; ð1:10Þ

where a� 1.42 Å is the nearest-neighbour distance. It corresponds to a so-called

conjugated carbon–carbon bond (like in benzene) intermediate between a single

bond and a double bond, with lengths r1� 1.54 Å and r2� 1.31 Å, respectively.

The honeycomb lattice contains two atoms per elementary cell. They belong

to two sublattices, A and B, each atom from sublattice A being surrounded by

three atoms from sublattice B, and vice versa (a bipartite lattice). The nearest-

neighbour vectors are

~d1 ¼ a

2
1;

ffiffiffi
3
p� �

; ~d2 ¼ a

2
1;�

ffiffiffi
3
p� �

; ~d3 ¼ að�1; 0Þ: ð1:11Þ

Fig. 1.3. The structure of graphite. Carbon atoms belonging to two different
sublattices are shown as black and light grey.

A

(a)

B

a1

a2

ky b1

b2

K�

MΓ

K

Kx

(b)

Fig. 1.4. (a) A honeycomb lattice, subblattices A and B are shown as black
and grey. (b) Reciprocal lattice vectors and some special points in the
Brillouin zone.
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The reciprocal lattice is also triangular, with the lattice vectors

~b1 ¼ 2p
3a

1;
ffiffiffi
3
p� �

; ~b2 ¼ 2p
3a

1;�
ffiffiffi
3
p� �

: ð1:12Þ

The Brillouin zone is presented in Fig. 1.4(b). Special high-symmetry points

K, K0 and M are shown there, with the wave vectors

~K0 ¼ 2p
3a

;
2p

3
ffiffiffi
3
p

a

� �
; ~K ¼ 2p

3a
;� 2p

3
ffiffiffi
3
p

a

� �
; ~M ¼ 2p

3a
; 0

� �
: ð1:13Þ

The electronic structures of graphene and graphite are discussed in detail in

Bassani &Pastori Parravicini (1975). In Fig. 1.5we show a recent computational

result for graphene. The sp2 hybridized states (s states) form occupied and

empty bands with a huge gap, whereas p states form a single band, with a

conical self-crossing point inK (the same point, by symmetry, exists also inK0).
This conical point is a characteristic of the peculiar electronic structure of

graphene and the origin of its unique electronic properties. It was first obtained

by Wallace (1947) in the framework of a simple tight-binding model. Further

this model was developed byMcClure (1957) and Slonczewski &Weiss (1958).

Let us start, following Wallace (1947), with the nearest-neighbour

approximation for the p states only, with the hopping parameter t. The

basis of electron states contains two p states belonging to the atoms from

sublattices A and B. In the nearest-neighbour approximation, there are no

hopping processes within the sublattices; hopping occurs only between them.

The tight-binding Hamiltonian is therefore described by the 2	 2 matrix

Γ
–20

–15

–10

–5

E
ne

rg
y 

(e
V

)

0

5

K M Γ

Fig. 1.5. The band structure of graphene (reproduced with permission from
Boukhvalov, Katsnelson & Lichtenstein, 2008).
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Ĥð~kÞ ¼ 0 tSð~kÞ
tS
ð~kÞ 0

� �
; ð1:14Þ

where ~k is the wave vector and

Sð~kÞ ¼
X
~d

ei
~k~d ¼ 2 exp

ikxa

2

� �
cos

kya
ffiffiffi
3
p

2

 !
þ expð�ikxaÞ: ð1:15Þ

The energy is, therefore,

Eð~kÞ ¼ �tjSð~kÞj ¼ �t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ fð~kÞ

q
; ð1:16Þ

where

fð~kÞ ¼ 2 cos
ffiffiffi
3
p

kya
� �

þ 4 cos

ffiffiffi
3
p

2
kya

 !
cos

3

2
kxa

� �
: ð1:17Þ

One can see immediately that Sð~KÞ ¼ Sð~K0Þ ¼ 0, which means band crossing.

On expanding the Hamiltonian near these points one finds

ĤK0 ð~qÞ � 3at

2

0 aðqx þ iqyÞ
a
ðqx � iqyÞ 0

� �
;

ĤKð~qÞ � 3at

2

0 a
ðqx � iqyÞ
aðqx þ iqyÞ 0

� �
;

ð1:18Þ

where a¼ e5ip/6, with ~q ¼ ~k� ~K and ~k� ~K0, respectively. The phase 5p/6 can

be excluded by a unitary transformation of the basis functions. Thus, the

effective Hamiltonians near the points K and K0 take the form

ĤK;K0 ð~qÞ ¼ �hv
0 qx � iqy

qx � iqy 0

� �
; ð1:19Þ

where

v ¼ 3ajtj
2

ð1:20Þ

is the electron velocity at the conical points. The possible negative sign of t

can be excluded by an additional phase shift by �p.
On taking into account the next-nearest-neighbour hopping t0, one finds,

instead of Eq. (1.16),

Eð~kÞ ¼ �tjSð~kÞj þ t0fð~kÞ ¼ �t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ fð~kÞ

q
þ t0fð~kÞ: ð1:21Þ

The second term breaks the electron–hole symmetry, shifting the conical

point from E¼ 0 to E¼�3t0, but it does not change the behaviour of

8 The electronic structure of ideal graphene
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the Hamiltonian near the conical points. Actually, this behaviour is

symmetry-protected (and even topologically protected), as we will see in the

next section.

The points K and �K0 differ by the reciprocal lattice vector ~b ¼ ~b1 � ~b2, so

the point K0 is equivalent to �K. To show this explicitly, it is convenient

sometimes to use a larger unit cell in the reciprocal space, with six conical

points. The spectrum (1.16) in this representation is shown in Fig. 1.6.

The parameters of the effective tight-binding model can be found by fitting

the results of first-principles electronic-structure calculations. According to

Reich et al. (2002), the first three hopping parameters are t¼�2.97 eV,

t0 ¼�0.073 eV and t00 ¼�0.33 eV. The smallness of t0 means that the electron–

hole symmetry of the spectrum is very accurate not only in the vicinity of the

conical points but also throughout the whole Brillouin zone.

There are saddle points of the electron energy spectrum at M (see Figs. 1.5

and 1.6), with Van Hove singularities in the electron density of states, dN(E)

/ – lnjE – EMj (Bassani & Pastori Parravicini, 1975). The positions of these

singularities are

EM� ¼ tþ t0 � 3t00 � �2:05 eV
and

EMþ ¼ �tþ t0 þ 3t00 � 1:91 eV:

K2 K1

Fig. 1.6. The electron energy spectrum of graphene in the nearest-neighbour
approximation.
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1.3 Massless Dirac fermions in graphene

Undoped graphene has a Fermi energy coinciding with the energy at the

conical points, with a completely filled valence band, an empty conduction

band and no band gap in between. This means that, from the point of view of

a general band theory, graphene is an example of a gapless semiconductor

(Tsidilkovskii, 1996). Three-dimensional crystals, such as HgTe and a-Sn
(grey tin) are known to be gapless semiconductors. What makes graphene

unique is not the gapless state itself but the very special, chiral nature of the

electron states, as well as the high degree of electron–hole symmetry.

For any realistic doping, the Fermi energy is close to the energy at the

conical point, jEFj� jtj. To construct an effective model describing electron

and hole states in this regime one needs to expand the effective Hamiltonian

near one of the special points K and K0 and then make the replacements

qx ! �i qqx ; qy ! �i qqy ;
which corresponds to the effective mass approximation, or ~k�~p perturbation

theory (Tsidilkovskii, 1982; Vonsovsky & Katsnelson, 1989). From Eq. (1.19),

one has

ĤK ¼ �i�hv~sr; ð1:22Þ

ĤK0 ¼ ĤT
K; ð1:23Þ

where

s0 ¼ 1 0
0 1

� �
; sx ¼ 0 1

1 0

� �
; sy ¼ 0 �i

i 0

� �
; sz ¼ 1 0

0 �1
� �

ð1:24Þ

are Pauli matrices (only x- and y-components enter Eq. (1.22)) and T denotes

a transposed matrix. A complete low-energy Hamiltonian consists of 4	 4

matrices taking into account both two sublattices and two conical points

(in terms of semiconductor physics, two valleys).

In the basis

C ¼
cKA

cKB

cK0A
cK0B

0
BB@

1
CCA; ð1:25Þ

where cKA means a component of the electron wave function corresponding

to valley K and sublattice A, the Hamiltonian is a 2	 2 block supermatrix,

Ĥ ¼ ĤK 0
0 ĤK0

� �
: ð1:26Þ
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