
1 Introduction

Solid state physics grew out of applications of quantum mechanics to the problem of electron
conduction in solids. This seemingly simple problem defied solution because the presence
of an ion at each lattice site seemed to present an obvious impediment to conduction.
How the electrons avoid the ions was thus the basic question. Although the answer to this
question is well known, it does serve to illuminate the very essence of solid state physics:
there is organization in the many. Each electron adjusts its wavelength to take advantage of
the periodicity of the lattice. In the absence of impurities, conduction is perfect. Hence, by
understanding this simple fact that periodicity implies perfect conduction, it became clear
that the experimentally observed resistivity in a metal came not from electrons running
into each of the ions but rather from dirt (disorder), thermal effects mediated by dynamical
motion of the ions, or electron–electron interactions. This book examines each of these
effects with an eye for identifying underlying organizing principles that simplify the physics
of such interactions.

1.1 Spontaneously broken symmetry

The search for organizing principles that help simplify the physics of many-body systems
is at the heart of modern solid state or, more generally, condensed matter physics. One such
tool is symmetry. Consider the simple case of permutation symmetry typically taught in a
first class in quantum mechanics. This symmetry was introduced into quantum mechanics by
W. Heisenberg in the context of the indistinguishability of identical particles. The permuta-
tion group has a finite number of elements and hence is associated with a discrete symmetry.
Permutation symmetry allows us to classify fundamental particles into two groups. Bosons
are even with respect to interchange of two particles and fermions odd. This symmetry can
be generalized to include a non-integer phase when two particles are interchanged, as we
will see in the context of the fractional quantum Hall effect.

To a large extent, the symmetries that are most relevant in condensed matter systems are
typically continuous, for example rotational symmetry. Spontaneously breaking a continu-
ous symmetry has a fundamental consequence. For example, the existence of phonons in
a solid or spin waves in a magnet follows from the spontaneous breaking of a continuous
symmetry. By spontaneous, we mean without the application of an external field. A periodic
arrangement of ions in a crystal breaks continuous translational and rotational symmetry.
Such spontaneous breaking of a continuous symmetry by the very existence of the lattice
is necessarily accompanied by a massless spinless bosonic excitation. That such massless
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2 Introduction

spinless bosons, known as Nambu–Goldstone bosons (G1961; N1960), necessarily accom-
pany the breaking of a continuous symmetry can easily be deduced from the following
considerations. We consider a system with a Lagrangian

L = T −V (φ), (1.1)

consisting of a kinetic energy, T , and a potential energy, V (φ), where we are allowing for
φ to be a complex function. The claim that such a system is invariant under a symmetry
operation is captured by

V (φ) = V (φ + εδφ), (1.2)

where εδφ is the generator of the symmetry operation. Here ε is an infinitesimal. We have
assumed for the moment that δφ is independent of space. To illustrate what is meant by
this identity, consider a potential of the form V (φ) = ε0|φ|2. This potential is invariant
under transformations of the form φ → φeiθ . Let θ be a small quantity completely inde-
pendent of space. Then we can expand the exponential and retain only the first-order term.
Consequently, φ → φ(1 + iθ ) and we identify εδφ as iθφ; that is, ε = θ and δφ = iφ.
This symmetry, known as U(1), is present in models that preserve charge conservation.
Expansion of V (φ) to linear order in ε implies that

δφ
δV

δφ
= 0, (1.3)

assuming that the symmetry is intact. Now assume explicitly that the symmetry is broken
such that V → V (φ0 + χ), where φ0 minimizes the potential and χ cannot be written as
a generator of a symmetry operation as in Eq. (1.2). Since the potential has a minimum, it
makes sense to expand

V (φ0 + χ) = V (φ0)+ 1

2
χ2 ∂

2V

∂φ2

∣∣∣∣
φ=φ0

= V (φ0)+ 1

2
χ2m2, (1.4)

truncating at the restoring term at second order. The second term, which can be used to
define the mass (m) in a standard harmonic expansion, is inherently positive semi-definite
since we have expanded about the minimum. With this equation in hand, we differentiate
Eq. (1.3),

∂δφ

∂φ

δV

δφ
+ δφ ∂

2V

∂φ2
= 0, (1.5)

with respect to φ. The first term vanishes when evaluated at the minimum, implying that

δφ
∂2V

∂φ2

∣∣∣∣
φ=φ0

= 0 (1.6)
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3 1.1 Spontaneously broken symmetry

must identically vanish for any variation of φ in the broken symmetry state. Since δφ is
non-zero, Eq. (1.6) is satisfied only if the second-order-derivative term vanishes or equiv-
alently if m2 = 0. That is, the mass vanishes. This is Goldstone’s theorem (G1961). A
zero mode exists for each generator of a continuously broken symmetry. As a result of this
theorem, symmetry occupies a central place in all areas of physics, in particular particle and
condensed matter physics. Typically, the massless bosons that arise in condensed matter
systems represent collective excitations of the entire many-body system. In fluids, phonons
are purely longitudinal and arise from spontaneous breaking of Galilean invariance. In
solids, phonons are both transverse and longitudinal, though with no simple correspon-
dence with the spontaneous breaking of Galilean, translational, and rotational symmetry.
In magnets, spin waves or magnons are the collective gapless excitations that emerge from
the spontaneous breaking of rotational symmetry.

We can of course relax the constraint that θ be independent of space. In so doing,
we can entertain what happens under local rather than global (θ independent of space)
transformations. While our analysis on the potential energy remains the same, the kinetic
energy,

T → 1

2
(∂μφ

∗)(∂μφ)+ 1

2
|φ|2(∂μθ (x))2, (1.7)

does acquire a new term describing the spatial variation of the phase. If the U(1) symmetry
is not broken by this transformation, then the second term must vanish. Demanding that

∂μθ = 0 (1.8)

requires that θ be spatially homogeneous for the symmetry to be preserved. As a result, a
consequence of breaking the continuous U(1) symmetry is that θ must be spatially non-
uniform. This is the situation in a superconductor. In fact, the current inside a superconductor
arises entirely from the spatial variation of the phase, as can be seen from the quantum
mechanical equation for the current,

jμ = e�

m
Imψ†∂μψ = e∗�

m
|	|2∂μθ, (1.9)

if we interpret ψ as the wavefunction for the superconducting state; that is, ψ = 	eiθ . We
will see in the chapter on superconductivity precisely how this state of affairs arises. We will
interpret ψ as the order parameter of a superconducting state. While the Bardeen–Cooper–
Schrieffer (BCS) theory of superconductivity was certainly not formulated as an example
of a broken continuous symmetry, this is the basic principle that underlies this theory. In
fact, the key ingredients of superconductivity, charge 2e carriers and a supercurrent, all
follow from breaking U(1) symmetry.

Massless bosons that emerge from broken symmetry typically generate new unexpected
physics. For example, phonons mediate pairing between electrons, thereby driving the onset
of superconductivity in metals such as Hg and more complicated systems, for example
MgB2. However, strict rules determine how such Nambu–Goldstone bosons can affect
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4 Introduction

any system. As shown by Adler (A1965), the interactions induced by massless bosons
arising from the breaking of a continuous symmetry must be proportional to the transferred
momentum. More formally, interactions mediated by the exchange of a Nambu–Goldstone
boson can only obtain through derivative couplings. Consequently, the interaction vanishes
for zero exchanged momentum. This principle implies that the electron–phonon interaction
which mediates pairing in elemental superconductors is inherently dynamical in nature. We
will verify this important principle in the context of the electron–phonon coupling through
an explicit derivation. Hence, entirely from the existence of a lattice, phonons and the kinds
of interactions they mediate can be easily deduced.

1.2 Tracking broken symmetry: order parameter

The idea of an order parameter is another powerful concept in condensed matter physics.
Order parameters track broken symmetry. That is, they are non-zero in the broken symmetry
phase and zero otherwise. Consider a ferromagnet. Locally each spin can point along any
direction. This is the case at high temperature in which no symmetry is broken. In a phase
transition controlled by thermal fluctuations, typically it is the high-temperature phase
that has the higher symmetry. To quantify the order in a collection of spins, we sum the
z-component of each of the spin operators,

M = 1

N

∑
i

〈Sz
i 〉, (1.10)

scaled by the number of spins, N . Here Sz
i is the z-component of the spin of the atom on

site i and the angle brackets indicate a thermal average over the states of the system. M is
the magnetization. At high temperature before any symmetry is broken, the magnetization
is identically zero. At sufficiently low temperatures, the spins order and the magnetization
acquires a non-zero value. Consider iron for which the Curie or ordering temperature is
1340 K. It turns out that most parts of a block of iron below the magnetization temperature
have vanishing magnetization. This state of affairs obtains because the magnetization is
in general a function of space. As a result, a block of iron does not break the symmetry
uniformly. In fact, the actual magnetization in bulk magnets is not acquired spontaneously
but rather by some external means to align all of the individual magnetic domains. At the
boundary of a domain, the magnetization changes sign, creating a domain wall. Typical
domain sizes in iron are roughly 300 ions. Placing a chunk of Fe in a magnetic field will
orient all of the domains in the same direction, a state of affairs that will persist long after the
field is turned off. This is important since the re-oriented domain state does not constitute
a minimum energy state of the system. The domains lock into place by becoming pinned
to defects. One would expect then that as the magnetizing field is varied, the magnetization
would not change continuously but by discontinuous jumps as domain walls de-pin from
defects. This is the essence of the Barkhaussen effect, the tiny discontinuous jumps the
magnetization makes in the presence of an external magnetic field and ultimately the reason
why the magnetization curve in a ferromagnet exhibits hysteresis as depicted in Fig. 1.1.
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5 1.2 Tracking broken symmetry: order parameter

–5

80

40

0

–40

–80
–2.5

H (kOe)

M
 (

μe
m
u)

0 2.5 5

Fig. 1.1 Hysteresis curve of the magnetization as a function of the applied field for a CoPtCrB thin film. Multilayer Co/Pt is used
in memory storage. Reprinted from Carpenter et al., Phys. Rev. B 72, 052410 (2005).

That is, ramping the field on and off is path dependent determined by which domains de-pin
sequentially.

What is crucial in the magnetic system is that locally there are two degrees of freedom
for each of the spins. At high temperature, both states are accessible. At sufficiently low
temperature, one of the spin states is selected. Such state selectivity can be modeled with a
double-well potential of the form

V (M ) = −1

2
αM2 + 1

4
γM4, (1.11)

where M is the magnetization and α and γ are positive. The minima of this potential occur
at

M± = ±
√
α

γ
. (1.12)

Both of the minima are accessible at high temperature and no magnetization is possible.
Our choice of α > 0 ensures that deviations of M away from M± cost energy. As a result,
the minimum energy of V is not zero but rather the non-zero value of V0 = −α2/4γ . As it
stands, our theory is completely symmetrical with respect to the change M →−M . Surely
the physics cannot change if we were to recast our theory by shifting the scalar field M by
a constant such that M → M+ + φ(x). The new potential

V ′ = V0 +
(
−1

2
α + 3

2
γM2

+

)
φ2 + γM+φ3 + 1

4
γφ4 (1.13)

no longer looks symmetrical in terms of the new field φ. Why? What we have done by
expanding around one of the minima of V is to hide the symmetry. Essentially we have
broken the symmetry by setting the magnetization to M+. In the broken symmetry phase,
up and down spins are no longer equivalent. The field M functions as the measure of the
magnetic order. M is the order parameter. Unlike the old potential which was minimized by
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6 Introduction
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Fig. 1.2 Potential corresponding to the complex scalar fieldϕ. The minima correspond to circles satisfying
ϕ21 + ϕ22 = α/γ .

a non-zero value of M , the minima of V ′ take place at φ(x) = 0. This corresponds to a true
vacuum. In classical models for ferromagnets, the magnetization turns on continuously,

M ∝ |T − Tc|α, (1.14)

at a non-zero temperature, Tc. It acquires its maximum value at T = 0. The exponent α is
the critical exponent for the turn-on of the order parameter.

A slightly more complicated example of broken symmetry occurs when we modify our
potential,

V (ϕ) = −αϕ∗ϕ + γ (ϕ∗ϕ)2, (1.15)

to allow for a complex scalar field ϕ = 1√
2
(ϕ1 + iϕ2). For α > 0 and γ > 0, the potential

is illustrated in Fig. 1.2. The corresponding Lagrangian takes the form

L = 1

2
(∂μϕ

∗)(∂μϕ)− (αϕ∗ϕ + γ (ϕ∗ϕ)2) . (1.16)

Our Lagrangian has the global symmetry ϕ → ϕeiθ , where θ is a constant. As a result of
this symmetry, the minima of V now take on a circle of values satisfying ϕ2

1 + ϕ2
2 = α/γ ,

as illustrated in Fig. 1.2. That is, there are infinitely many saddle points as a result of the
continuous global symmetry. As before with the single scalar field for the magnetization,

we can expand about the circular minima by defining ϕ = (
√
α
γ
+ f (x) + ig(x)). That is,

we break the symmetry by hand. Because at the minima ϕ1 and ϕ2 are not independent, this
transformation is not a simple translation of ϕ1 and ϕ2 separately. As a result, the quadratic
term essentially has only one degree of freedom. We can interpret this as a vanishing
of the mass for one of the scalar fields, in line with Goldstone’s theorem that a massless
mode must emerge upon the breaking of a continuous symmetry. Such a solution in which a
complex field acquires a non-zero value is the heart of the superconducting transition. What
the Bardeen–Cooper–Schrieffer solution laid plain is that the phenomenological Landau–
Ginzburg treatment in terms of a complex order parameter acquiring a non-zero value in
the superconducting state has a microscopic basis in the electron–phonon interaction. Such
an interaction mediates pairing and the order parameter for the superconducting state is a
product of an amplitude for pair formation times eiθ (r), where θ is the phase of the pair
field.
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7 1.3 Beyond broken symmetry
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Fig. 1.3 Energy-level diagram for the ground state, E0, and first excited state, E1, as a function of a coupling constant, g. The
crossing at gc signals a phase transition between the ground and the first excited state.

Our statement that the low-temperature phase typically has lower symmetry is only true
classically. There are many examples of symmetry breaking at T = 0 that have nothing
to do with thermal fluctuations. Such phase transitions are governed by fluctuations of the
vacuum, that is the uncertainty principle. In general, such phase transitions are governed
by a transition among the quantum mechanical states of a many-body system simply by
changing some system parameter. Consider a Hamiltonian H (g), where g is a coupling
constant. A typical energy-level diagram for this system as a function of g is depicted
in Fig. 1.3. If, as a function of g, the first-excited and the ground states cross, a phase
transition obtains to the first-excited state. For the transition to be continuous, we must have
that ∂E/∂g = 0. These types of situation are discussed explicitly in Chapter 14.

1.3 Beyond broken symmetry

Despite the utility of symmetry in classifying collective phenomena, physics is replete with
examples of transitions between states of matter that share the same symmetry but are,
nonetheless, distinct. An obvious example is the liquid–gas transition or the formation of
the fractional quantum Hall state. However, the particular examples we focus on here, which
typify the physics of strong coupling, are those in which the formation of some kind of
bound state is the distinguishing feature. Consider, for example, the vulcanization or cross-
linking transition in rubber. In the un-vulcanized state, rubber is a viscous liquid in which
long-chain monomers move independently. Cross-linking between neighboring monomers,
resulting in the formation of a highly entangled enmeshed amorphous state, defines the
vulcanization transition. Although the monomers are localized in the vulcanized state, they
are randomly located. Consequently, there are no Bragg peaks. Nonetheless, one can define
an appropriate order parameter (GCZ1996) which reflects the fact that at t = 0 and t = ∞,
the configuration of the monomer strands in the liquid changes while it is essentially static
in the amorphous state. The resulting resilience and emergent static modulus of rubber
both arise from the effective gluing together of the monomers. In high-energy physics,
mesons or bound states of quarks are the propagating degrees of freedom at low energy
in nuclei. They arise without the breaking of any continuous symmetry. In problems more
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8 Introduction

relevant for this text, a magnetic impurity in a non-magnetic host forms a bound state
with all the conduction electrons below a characteristic temperature, once again without
breaking any symmetry or even inducing a phase transition. The formation of such bound
states is the essence of the Kondo problem which stands as one of the key triumphs of
the renormalization group principle. As we will show from a systematic integration of
the high-energy degrees of freedom, a bound state emerges because the coupling constant
between the impurity and the host electrons diverges. Hence, at low temperatures it is not
correct to think of the magnetic and conduction electron degrees of freedom separately.
A new entity emerges at low energies that is not present in the starting ultraviolet (UV)-
complete Lagrangian, a characteristic feature of strong-coupling systems. Although new
degrees of freedom are present at strong coupling which are absent in the weakly coupled or
high-temperature regime, the two states are still adiabatically connected in that by varying
the system parameters, one can go smoothly from one phase to the other. Nonetheless,
the phases are quite distinct. They possess different degrees of freedom, and no unified
description exists of such systems in terms of a single entity. Bound-state formation is a
standard paradigm in strong coupling physics and, as we will see, the Mott problem, an
insulating state in a partially filled band, is no exception.

Another key example is Fermi liquid theory. The primary tenet of this theory is that the
excited states of a metal stand in a one-to-one correspondence with those of a non-interacting
electron gas. The interactions in a metal are of course non-zero. However, they are strongly
screened and can be treated as essentially short-ranged. The Landau (L1957) assertion is
that all such short-ranged repulsive interactions do not destroy the sharpness of the electron
excitations in the non-interacting electron gas. That this state of affairs obtains is perhaps
one of the most remarkable principles in nature. Why can the short-range interactions be
ignored in a metal? The answer lies in a fundamental renormalization principle which
we present in Chapter 12. The key to solving any many-body problem is to identify the
propagating degrees of freedom. Identifying that the propagating degrees of freedom are
single electrons with a dispersion relation given by p2/2m in an interacting electron gas
is highly non-trivial. In fact, it cannot be deduced directly from the Hamiltonian. Some
further fact is needed. That further fact is the existence of a Fermi surface. As we will see,
the fundamental principle that makes Fermi liquid theory work is that a Fermi surface is
remarkably resilient to short-range repulsive interactions. We will demonstrate explicitly
that all renormalizations (P1992; SM1991; BG1990) arising from such interactions are
towards the Fermi surface. As a result, such interactions can effectively be integrated out,
leaving behind dressed electrons or quasi-particles, thereby justifying the key Landau tenet
(L1957) that the low-energy electronic excitation spectrum of a metal is identical to that
of a non-interacting Fermi gas. Consequently, breaking Fermi liquid theory in dimensions
greater than or equal to two is notoriously difficult. In one spatial dimension, interactions
are always relevant, as will be seen, and a new state of matter arises, termed a Luttinger
liquid, in which spin and charge move but with different velocities. In higher dimensions,
the problem is open and stands as the key outstanding problem in solid state physics.

As Fermi liquid theory made the BCS theory of the superconducting state possible in
that it cleanly identified the propagating degrees of freedom, a similar identification of the
propagating degrees of freedom in the normal state of the copper-oxide high-temperature
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9 References

superconductors is necessary to know what pairs up to form the superconducting conden-
sate. This problem is particularly difficult as the parent materials are all antiferromagnetic
Mott insulators. Some of the agreed-upon physics of this remarkable problem and a forward-
leaning perspective are discussed in the final chapter of this book.
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2 Non-interacting electron gas

At the close of the previous chapter, we noted that one can understand the elementary
properties of metals in terms of non-interacting electrons and phonons. For example, the
low-temperature specific heat of a metal is the sum of a term linear in the temperature, T ,
from the electrons and a term proportional to T 3 from the phonons. This result follows
from a non-interacting particle picture. The electrical conductivity limited by non-magnetic
impurity scattering is also well described by a non-interacting electron gas. In addition,
from a knowledge of single-electron band theory, one can discern qualitatively the dif-
ferences between metals, insulators, and semiconductors. The remarkable success of the
non-interacting model is paradoxical because electrons and ions are strongly interacting
both with themselves and with one another. Along with its successes, the non-interacting
picture has colossal shortcomings, most notably its inability to describe old problems such
as cohesive energies, superconductivity, magnetism, and newer phenomena such as doped
Mott insulators, the Kondo problem, and the fractional quantum Hall effects. We first review
the physics of the non-interacting electron gas. It is only after we develop methodology for
dealing with electron interactions than we can lay plain the reasons why the non-interacting
model works so well.

Electrons in metals are quantum mechanical particles with spin �/2 obeying Fermi–Dirac
statistics. The Hamiltonian of a single electron is p̂2/2m where p̂ is the electron momentum
(operator) and m the electron mass. Its eigenstates are plane waves of the form eip·r/�/

√
V

times a spinor which specifies the electron spin projection on a convenient axis (usually ẑ),
�σ/2 where σ = ±1; here V is the system volume. The Hamiltonian (operator) for N such
non-interacting electrons,

Ĥ =
N∑

i=1

p̂2
i

2m
, (2.1)

is simply the sum of the kinetic energies of the individual particles. In this case, the
eigenstates are products of the occupied single-particle plane-wave states. Each plane-wave
state can be occupied at most by one electron of a given spin. We label these eigenstates
by the distribution function fpσ , which is 1 if the single-particle momentum-spin state
is occupied and 0 otherwise. In the ground state, the lowest N/2 single-particle states
are doubly occupied with electrons of opposite spin. Consequently, in the ground state
(temperature T = 0), the distribution function is

fpσ = �(μ0 − p2/2m), (2.2)

where �(x) is the Heaviside function, �(x > 0) = 1, and 0 otherwise. Here μ0 is the
zero-temperature electron chemical potential, which in this case is simply the Fermi energy,
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