FRACTURE MECHANICS

Fracture and "slow" crack growth reflect the response of a material (i.e., its microstructure) to the conjoint actions of mechanical and chemical driving forces and are affected by temperature. Therefore, there is a need for quantitative understanding and modeling of the influences of chemical and thermal environments, and of microstructure, in terms of the key internal and external variables and for their incorporation into design and probabilistic implications. This text, which the author has used in a fracture mechanics course for advanced undergraduate and graduate students, is based on the work of the author's Lehigh University team whose integrative research combined fracture mechanics, surface and electrochemistry, materials science, and probability and statistics to address a range of fracture safety and durability issues on aluminum, ferrous, nickel, and titanium alloys, and ceramics. Examples from this research are included to highlight the approach and applicability of the findings in practical durability and reliability problems.

Robert P. Wei is the Reinhold Professor of Mechanical Engineering and Mechanics at Lehigh University. His principal research is in fracture mechanics, including chemical, microstructural, and mechanical considerations of stress corrosion cracking, fatigue, and corrosion, and in life-cycle engineering. He is the author of hundreds of refereed research publications. He is a Fellow of the American Society for Testing and Materials; the American Society of Metals International; and the American Institute of Mining, Metallurgical, and Petroleum Engineering and a member of Sigma Xi and the Phi Beta Delta International Honor Societies.

Fracture Mechanics

INTEGRATION OF MECHANICS, MATERIALS SCIENCE, AND CHEMISTRY

Robert P. Wei Lehigh University

© in this web service Cambridge University Press & Assessment

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9780521194891

© Robert P. Wei 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2010 First paperback edition 2013

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Wei, Robert Peh-ying, 1931-Fracture mechanics : integration of mechanics, materials science, and chemistry / Robert Wei. p. cm. Includes bibliographical references. ISBN 978-0-521-19489-1 (hardback) 1. Fracture mechanics. I. Title. TA409.W45 2010 2009044098 620.1´126-dc22 ISBN 978-0-521-19489-1 Hardback 978-1-107-66552-1 ISBN Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Lee

For her love, counsel, dedication, and support

Pre	face		<i>page</i> xiii	
Ack	cnow	ledgments	XV	
1	Inti	roduction	1	
	1.1	Contextual Framework	2	
	1.2	Lessons Learned and Contextual Framework	4	
	1.3	Crack Tolerance and Residual Strength	5	
	1.4	Crack Growth Resistance and Subcritical Crack Growth	7	
	1.5	Objective and Scope of Book	7	
	REF	ERENCES	8	
2	Phy	vsical Basis of Fracture Mechanics	9	
	2.1	Classical Theories of Failure	9	
		2.1.1 Maximum Principal Stress (or Tresca [3]) Criterion	9	
		2.1.2 Maximum Shearing Stress Criterion	10	
		2.1.3 Maximum Principal Strain Criterion	10	
		2.1.4 Maximum Total Strain Energy Criterion	10	
		2.1.5 Maximum Distortion Energy Criterion	11	
		2.1.6 Maximum Octahedral Shearing Stress Criterion		
		(von Mises [4] Criterion)	12	
		2.1.7 Comments on the Classical Theories of Failure	12	
	2.2	Further Considerations of Classical Theories	12	
	2.3	Griffith's Crack Theory of Fracture Strength	14	
	2.4	Modifications to Griffith's Theory	16	
	2.5	Estimation of Crack-Driving Force G from Energy Loss Rate		
		(Irwin and Kies [8, 9])	17	
		Experimental Determination of G	20	
	2.7	Fracture Behavior and Crack Growth Resistance Curve	21	
	REFERENCES			

CAMBRIDGE

viii

Cambridge University Press & Assessment 978-0-521-19489-1 — Fracture Mechanics Robert P. Wei Frontmatter <u>More Information</u>

3	3 Stress Analysis of Cracks				
	3.1 Two-Dimensional Theory of Elasticity				
		3.1.1 Stresses	27		
		3.1.2 Equilibrium	27		
		3.1.3 Stress-Strain and Strain-Displacement Relations	28		
		3.1.4 Compatibility Relationship	29		
	3.2	Airy's Stress Function	30		
		3.2.1 Basic Formulation	30		
		3.2.2 Method of Solution Using Functions of Complex Variables	32		
		Complex Numbers	32		
		Complex Variables and Functions	32		
		Cauchy-Riemann Conditions and Analytic Functions	33		
	3.3	Westergaard Stress Function Approach [8]	34		
		3.3.1 Stresses	34		
		3.3.2 Displacement (Generalized Plane Stress)	35		
		3.3.3 Stresses at a Crack Tip and Definition of Stress Intensity			
		Factor	36		
	3.4	Stress Intensity Factors – Illustrative Examples	38		
		3.4.1 Central Crack in an Infinite Plate under Biaxial Tension	• •		
		(Griffith Problem)	39		
		Stress Intensity Factor	39		
		Displacements	41		
		3.4.2 Central Crack in an Infinite Plate under a Pair of	44		
		Concentrated Forces [2–4]	41		
		3.4.3 Central Crack in an Infinite Plate under Two Pairs of	12		
		Concentrated Forces	43		
		3.4.4 Central Crack in an Infinite Plate Subjected to Uniformly Distributed Pressure on Crack Surfaces	12		
	25		43 45		
		Relationship between G and K Plastic Zone Correction Factor and Crack Opening	43		
	5.0	Plastic Zone Correction Factor and Crack-Opening Displacement	47		
		Plastic Zone Correction Factor	47 47		
		Crack-Tip-Opening Displacement (CTOD)	48		
	37	Closing Comments	48		
		ERENCES	49		
4	Exp	perimental Determination of Fracture Toughness	. 50 50		
	4.1 Plastic Zone and Effect of Constraint				
		Effect of Thickness; Plane Strain versus Plane Stress	52		
	4.3	Plane Strain Fracture Toughness Testing	54		
		4.3.1 Fundamentals of Specimen Design and Testing	55		
		4.3.2 Practical Specimens and the "Pop-in" Concept	58		
		4.3.3 Summary of Specimen Size Requirement	60		

Cor	ntent	S		
		4.3.4 Interpretation of Data for Plane Strain Fracture Toughness	i	
		Testing	61	
		Crack Growth Resistance Curve	67	
	4.5	Other Modes/Mixed Mode Loading	70	
	REF	ERENCES	70	
5	Fracture Considerations for Design (Safety)			
	5.1	Design Considerations (Irwin's Leak-Before-Break Criterion)	72	
		5.1.1 Influence of Yield Strength and Material Thickness	74	
		5.1.2 Effect of Material Orientation	74	
	5.2	Metallurgical Considerations (Krafft's Tensile Ligament		
		Instability Model [4])	75	
	5.3	Safety Factors and Reliability Estimates	78	
		5.3.1 Comparison of Distribution Functions	81	
		5.3.2 Influence of Sample Size	82	
		Closure	84	
	REF	ERENCES	85	
6	Subcritical Crack Growth: Creep-Controlled Crack Growth			
	6.1	Overview	86	
	6.2	Creep-Controlled Crack Growth: Experimental Support	87	
	6.3	Modeling of Creep-Controlled Crack Growth	90	
		6.3.1 Background for Modeling	92	
		6.3.2 Model for Creep	93	
		6.3.3 Modeling for Creep Crack Growth	94	
	6.4	Comparison with Experiments and Discussion	97	
		6.4.1 Comparison with Experimental Data	97	
		6.4.2 Model Sensitivity to Key Parameters	99	
	6.5	Summary Comments	101	
	REF	ERENCES	101	
7		critical Crack Growth: Stress Corrosion Cracking and Fatigue		
	Cra	ck Growth (Phenomenology)	103	
	7.1	Overview	103	
	7.2	Methodology	104	
		7.2.1 Stress Corrosion Cracking	106	
		7.2.2 Fatigue Crack Growth	108	
		7.2.3 Combined Stress Corrosion Cracking and Corrosion		
		Fatigue	110	
	7.3	The Life Prediction Procedure and Illustrations [4]	111	
		Example 1 – Through-Thickness Crack	111	
		Example 2 – For Surface Crack or Part-Through Crack	114	
	7.4	Effects of Loading and Environmental Variables	115	

ix

х

Cambridge University Press & Assessment 978-0-521-19489-1 — Fracture Mechanics Robert P. Wei Frontmatter <u>More Information</u>

Contents
Contents

	7.5	Variability in Fatigue Crack Growth Data	118		
			118		
		-	119		
8	Sub	ocritical Crack Growth: Environmentally Enhanced Crack			
0	Growth under Sustained Loads (or Stress Corrosion Cracking)				
			120		
	8.2	Phenomenology, a Clue, and Methodology	121		
			123		
	8.4	Modeling of Environmentally Enhanced (Sustained-Load) Crack			
		Growth Response	124		
		Modeling Assumptions	126		
		8.4.1 Gaseous Environments	127		
		8.4.1.1 Transport-Controlled Crack Growth	129		
		8.4.1.2 Surface Reaction and Diffusion-Controlled Crack			
		Growth	130		
		8.4.2 Aqueous Environments	131		
		5	133		
	8.5	Hydrogen-Enhanced Crack Growth: Rate-Controlling Processes			
		5 6 6	133		
	8.6	Electrochemical Reaction-Controlled Crack Growth (Hydrogen			
			137		
	8.7	Phase Transformation and Crack Growth in Yttria-Stabilized			
			141		
	8.8		143		
			144		
		8 I	146		
		1	148		
		, i i i i i i i i i i i i i i i i i i i	148		
		8.8.3.2 Chemically Based Experiments (Surface Chemical	140		
			149		
		8.8.4 Mechanism for Oxygen-Enhanced Crack Growth in the	153		
		P/M Alloys 8.8.5 Importance for Material Damage Prognosis and Life Cycle	155		
			154		
	89	5 6	154		
			155		
9		critical Crack Growth: Environmentally Assisted Fatigue	150		
		ck Growth (or Corrosion Fatigue)			
			158		
	9.2	Modeling of Environmentally Enhanced Fatigue Crack Growth	4.50		
		1	158		
		9.2.1 Transport-Controlled Fatigue Crack Growth	160		

CAMBRIDGE

Cambridge University Press & Assessment 978-0-521-19489-1 — Fracture Mechanics Robert P. Wei Frontmatter <u>More Information</u>

		9.2.2	Surface/Electrochemical Reaction-Controlled Fatigue	
			Crack Growth	161
			Diffusion-Controlled Fatigue Crack Growth	162
			Implications for Material/Response	162
			Corrosion Fatigue in Binary Gas Mixtures [3]	162
			Summary Comments	164
	9.3		ture-Enhanced Fatigue Crack Growth in Aluminum	
		-	vs [1, 2, 5]	164
			Alloy 2219-T851 in Water Vapor [1, 2]	164
			Alloy 7075-T651 in Water Vapor and Water [5]	167
			Key Findings and Observations	168
	9.4		ronmentally Enhanced Fatigue Crack Growth in Titanium	
		Alloy		169
		9.4.1	Influence of Water Vapor Pressure on Fatigue Crack	
			Growth	169
			Surface Reaction Kinetics	169
			Transport Control of Fatigue Crack Growth	171
			Hydride Formation and Strain Rate Effects	173
			ostructural Considerations	175
			rochemical Reaction-Controlled Fatigue Crack Growth	177
			k Growth Response in Binary Gas Mixtures	180
			nary Comments	180
	REF	EREN	CES	181
10	Scie	ence-H	Based Probability Modeling and Life Cycle Engineering	
			agement	183
	10.1	Intro	oduction	183
			nework	184
			nce-Based Probability Approach	185
			1 Methodology	185
			2 Comparison of Approaches	186
	10.4		osion and Corrosion Fatigue in Aluminum Alloys, and	
			lications	187
			1 Particle-Induced Pitting in an Aluminum Alloy	187
			2 Impact of Corrosion and Fatigue Crack Growth	
			on Fatigue Lives (S-N Response)	191
		10.4.	3 S-N versus Fracture Mechanics (FM) Approaches to	
			Corrosion Fatigue and Resolution of a Dichotomy	193
		10.4.	4 Evolution and Distribution of Damage in Aging Aircraft	193
	10.5		Response for Very-High-Cycle Fatigue (VHCF)	194
		5 Sum		197
		FEREN	•	197
AP	PEN	DIX:	Publications By R. P. Wei and Colleagues	
			v/General	199

CAMBRIDGE

Cambridge University Press & Assessment 978-0-521-19489-1 — Fracture Mechanics Robert P. Wei Frontmatter <u>More Information</u>

xii

Fracture	200
Stress Corrosion Cracking/Hydrogen-Enhanced Crack Growth	200
Deformatiom (Creep) Controlled Crack Growth	203
Oxygen-Enhanced Crack Growth	203
Fatigue/Corrosion Fatigue	204
Fatigue Mechanisms	206
Ceramics/Intermetallics	211
Material Damage Prognosis/Life Cycle Engineering	211
Failure Investigations/Analyses	213
Analytical/Experimental Techniques	213

Preface

Engineering Fracture Mechanics, as a recognized branch of engineering mechanics, had its beginning in the late 1940s and early 1950s, and experienced major growth through the next three decades. The initial efforts were driven primarily by naval and aerospace interests. By the end of the 1980s, most of the readily tractable mechanics problems had been solved, and computational methods have become the norm in solving practical problems in fracture/structural integrity. On the lif-ing ("slow" crack growth) side, the predominant emphasis has been on empirical characterization and usage of data for life prediction and reliability assessments.

In reality, fracture and "slow" crack growth reflect the response of a material (*i.e.*, its microstructure) to the conjoint actions of mechanical and chemical driving forces, and are affected by temperature. The need for quantitative understanding and modeling of the influences of chemical and thermal environments and of microstructure (*i.e.*, in terms of the key *internal* and *external* variables), and for their incorporation into design, along with their probabilistic implications, began to be recognized in the mid-1960s.

With support from AFOSR, ALCOA, DARPA, DOE (Basic Energy Sciences), FAA, NSF, ONR, and others, from 1966 to 2008, the group at Lehigh University undertook integrative research that combined fracture mechanics, surface and electrochemistry, materials science, and probability and statistics to address a range of fracture safety and durability issues on aluminum, ferrous, nickel, and titanium alloys and on ceramics. Examples from this research are included to highlight the approach and applicability of the findings in practical problems of durability and reliability. An appended list of publications provides references/sources for more detailed information on research from the overall program.

The title *Fracture Mechanics: Integration of Fracture Mechanics, Materials Science, and Chemistry* gives tribute to those who have shared the vision and have contributed to and supported this long-term, integrative effort, and to those who recognize the need and value for this multidisciplinary team effort.

The author has used the material in this book in a fracture mechanics course for advanced undergraduate and graduate students at Lehigh University. This book should also serve as a reference for the design and management of engineered systems.

Acknowledgments

The author acknowledges the invaluable contributions and dedication of his colleagues: Dr. Ye T. (Russell) Chou (Materials Science), Dr. Kamil Klier (Surface Chemistry), Dr. Gary Simmons (Surface Chemistry), Dr. D. Gary Harlow (Probability and Statistics/Mechanical Engineering & Mechanics), and Dr. Ming Gao (Materials Science), and the many postdoctoral researchers and graduate students in Mechanical Engineering and Mechanics, Materials Science and Engineering, and Surface Science and Electrochemistry, who made this possible. The author also acknowledges the International Multimedia Resource Center (IMRC) of Lehigh University, under the leadership of Johanna Brams, especially Nyko DePeyer and Dawn Dayawon, for their assistance in graphic arts and manuscript preparation, and Sharon Siegler, Lehigh University librarian, for her counsel and expert assistance.