
1

Integer arithmetic

In this chapter, our main topic is integer arithmetic. However, we
shall see that many algorithms for polynomial arithmetic are sim-
ilar to the corresponding algorithms for integer arithmetic, but
simpler due to the lack of carries in polynomial arithmetic. Con-
sider for example addition: the sum of two polynomials of degree
n always has degree at most n, whereas the sum of two n-digit in-
tegers may have n + 1 digits. Thus, we often describe algorithms
for polynomials as an aid to understanding the corresponding
algorithms for integers.

1.1 Representation and notations

We consider in this chapter algorithms working on integers. We distinguish
between the logical – or mathematical – representation of an integer, and its
physical representation on a computer. Our algorithms are intended for “large”
integers – they are not restricted to integers that can be represented in a single
computer word.

Several physical representations are possible. We consider here only the
most common one, namely a dense representation in a fixed base. Choose an
integral base β > 1. (In case of ambiguity, β will be called the internal base.)
A positive integer A is represented by the length n and the digits ai of its base
β expansion

A = an−1β
n−1 + · · · + a1β + a0,

where 0 ≤ ai ≤ β − 1, and an−1 is sometimes assumed to be non-zero.
Since the base β is usually fixed in a given program, only the length n and
the integers (ai)0≤i<n need to be stored. Some common choices for β are
232 on a 32-bit computer, or 264 on a 64-bit machine; other possible choices

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19469-3 - Modern Computer Arithmetic
Richard P. Brent and Paul Zimmermann
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521194693

2 Integer arithmetic

are respectively 109 and 1019 for a decimal representation, or 253 when using
double-precision floating-point registers. Most algorithms given in this chapter
work in any base; the exceptions are explicitly mentioned.

We assume that the sign is stored separately from the absolute value. This
is known as the “sign-magnitude” representation. Zero is an important special
case; to simplify the algorithms we assume that n = 0 if A = 0, and we usually
assume that this case is treated separately.

Except when explicitly mentioned, we assume that all operations are off-line,
i.e. all inputs (resp. outputs) are completely known at the beginning (resp. end)
of the algorithm. Different models include lazy and relaxed algorithms, and
are discussed in the Notes and references (§1.9).

1.2 Addition and subtraction

As an explanatory example, here is an algorithm for integer addition. In the
algorithm, d is a carry bit.

Our algorithms are given in a language that mixes mathematical notation
and syntax similar to that found in many high-level computer languages. It
should be straightforward to translate into a language such as C. Note that
“:=” indicates a definition, and “←” indicates assignment. Line numbers are
included if we need to refer to individual lines in the description or analysis of
the algorithm.

Algorithm 1.1 IntegerAddition

Input: A =
∑n−1

0 aiβ
i, B =

∑n−1
0 biβ

i, carry-in 0 ≤ din ≤ 1
Output: C :=

∑n−1
0 ciβ

i and 0 ≤ d ≤ 1 such that A + B + din = dβn + C

1: d ← din

2: for i from 0 to n − 1 do
3: s ← ai + bi + d

4: (d, ci) ← (s div β, s mod β)

5: return C, d.

Let T be the number of different values taken by the data type representing
the coefficients ai, bi. (Clearly, β ≤ T , but equality does not necessarily hold,
for example β = 109 and T = 232.) At step 3, the value of s can be as
large as 2β − 1, which is not representable if β = T . Several workarounds
are possible: either use a machine instruction that gives the possible carry of
ai + bi, or use the fact that, if a carry occurs in ai + bi, then the computed

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19469-3 - Modern Computer Arithmetic
Richard P. Brent and Paul Zimmermann
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521194693

1.3 Multiplication 3

sum – if performed modulo T – equals t := ai + bi −T < ai; thus, comparing
t and ai will determine if a carry occurred. A third solution is to keep a bit in
reserve, taking β ≤ T/2.

The subtraction code is very similar. Step 3 simply becomes s ← ai−bi+d,
where d ∈ {−1, 0} is the borrow of the subtraction, and −β ≤ s < β. The
other steps are unchanged, with the invariant A − B + din = dβn + C.

We use the arithmetic complexity model, where cost is measured by the
number of machine instructions performed, or equivalently (up to a constant
factor) the time on a single processor.

Addition and subtraction of n-word integers cost O(n), which is negligible
compared to the multiplication cost. However, it is worth trying to reduce the
constant factor implicit in this O(n) cost. We shall see in §1.3 that “fast” mul-
tiplication algorithms are obtained by replacing multiplications by additions
(usually more additions than the multiplications that they replace). Thus, the
faster the additions are, the smaller will be the thresholds for changing over to
the “fast” algorithms.

1.3 Multiplication

A nice application of large integer multiplication is the Kronecker–Schönhage
trick, also called segmentation or substitution by some authors. Assume we
want to multiply two polynomials, A(x) and B(x), with non-negative integer
coefficients (see Exercise 1.1 for negative coefficients). Assume both polyno-
mials have degree less than n, and the coefficients are bounded by ρ. Now take
a power X = βk > nρ2 of the base β, and multiply the integers a = A(X) and
b = B(X) obtained by evaluating A and B at x = X . If C(x) = A(x)B(x) =∑

cix
i, we clearly have C(X) =

∑
ciX

i. Now since the ci are bounded by
nρ2 < X , the coefficients ci can be retrieved by simply “reading” blocks of k

words in C(X). Assume for example that we want to compute

(6x5 + 6x4 + 4x3 + 9x2 + x + 3)(7x4 + x3 + 2x2 + x + 7),

with degree less than n = 6, and coefficients bounded by ρ = 9. We can take
X = 103 > nρ2, and perform the integer multiplication

6 006 004 009 001 003 × 7 001 002 001 007

= 42 048 046 085 072 086 042 070 010 021,

from which we can read off the product

42x9 + 48x8 + 46x7 + 85x6 + 72x5 + 86x4 + 42x3 + 70x2 + 10x + 21.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19469-3 - Modern Computer Arithmetic
Richard P. Brent and Paul Zimmermann
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521194693

4 Integer arithmetic

Conversely, suppose we want to multiply two integers a =
∑

0≤i<n aiβ
i

and b =
∑

0≤j<n bjβ
j . Multiply the polynomials A(x) =

∑
0≤i<n aix

i and
B(x) =

∑
0≤j<n bjx

j , obtaining a polynomial C(x), then evaluate C(x) at
x = β to obtain ab. Note that the coefficients of C(x) may be larger than β, in
fact they may be up to about nβ2. For example, with a = 123, b = 456, and
β = 10, we obtain A(x) = x2 + 2x + 3, B(x) = 4x2 + 5x + 6, with product
C(x) = 4x4 +13x3 +28x2 +27x+18, and C(10) = 56088. These examples
demonstrate the analogy between operations on polynomials and integers, and
also show the limits of the analogy.

A common and very useful notation is to let M(n) denote the time to mul-
tiply n-bit integers, or polynomials of degree n− 1, depending on the context.
In the polynomial case, we assume that the cost of multiplying coefficients is
constant; this is known as the arithmetic complexity model, whereas the bit
complexity model also takes into account the cost of multiplying coefficients,
and thus their bit-size.

1.3.1 Naive multiplication

Algorithm 1.2 BasecaseMultiply

Input: A =
∑m−1

0 aiβ
i, B =

∑n−1
0 bjβ

j

Output: C = AB :=
∑m+n−1

0 ckβk

1: C ← A · b0

2: for j from 1 to n − 1 do
3: C ← C + βj(A · bj)

4: return C.

Theorem 1.1 Algorithm BasecaseMultiply computes the product AB

correctly, and uses Θ(mn) word operations.

The multiplication by βj at step 3 is trivial with the chosen dense representa-
tion; it simply requires shifting by j words towards the most significant words.
The main operation in Algorithm BasecaseMultiply is the computation of
A · bj and its accumulation into C at step 3. Since all fast algorithms rely on
multiplication, the most important operation to optimize in multiple-precision
software is thus the multiplication of an array of m words by one word, with
accumulation of the result in another array of m + 1 words.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19469-3 - Modern Computer Arithmetic
Richard P. Brent and Paul Zimmermann
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521194693

1.3 Multiplication 5

We sometimes call Algorithm BasecaseMultiply schoolbook multiplication
since it is close to the “long multiplication” algorithm that used to be taught at
school.

Since multiplication with accumulation usually makes extensive use of the
pipeline, it is best to give it arrays that are as long as possible, which means
that A rather than B should be the operand of larger size (i.e. m ≥ n).

1.3.2 Karatsuba’s algorithm

Karatsuba’s algorithm is a “divide and conquer” algorithm for multiplication
of integers (or polynomials). The idea is to reduce a multiplication of length n

to three multiplications of length n/2, plus some overhead that costs O(n).
In the following, n0 ≥ 2 denotes the threshold between naive multiplica-

tion and Karatsuba’s algorithm, which is used for n0-word and larger inputs.
The optimal “Karatsuba threshold” n0 can vary from about ten to about 100
words, depending on the processor and on the relative cost of multiplication
and addition (see Exercise 1.6).

Algorithm 1.3 KaratsubaMultiply

Input: A =
∑n−1

0 aiβ
i, B =

∑n−1
0 bjβ

j

Output: C = AB :=
∑2n−1

0 ckβk

if n < n0 then return BasecaseMultiply(A,B)
k ← �n/2�
(A0, B0) := (A,B) mod βk, (A1, B1) := (A,B) div βk

sA ← sign(A0 − A1), sB ← sign(B0 − B1)
C0 ← KaratsubaMultiply(A0, B0)
C1 ← KaratsubaMultiply(A1, B1)
C2 ← KaratsubaMultiply(|A0 − A1|, |B0 − B1|)
return C := C0 + (C0 + C1 − sAsBC2)βk + C1β

2k.

Theorem 1.2 Algorithm KaratsubaMultiply computes the product AB

correctly, using K(n) = O(nα) word multiplications, with α = lg 3 ≈ 1.585.

Proof. Since sA|A0 − A1| = A0 − A1 and sB|B0 − B1| = B0 − B1, we
have sAsB|A0 − A1||B0 − B1| = (A0 − A1)(B0 − B1), and thus C =
A0B0+(A0B1 + A1B0)βk + A1B1β

2k.
Since A0, B0, |A0−A1| and |B0−B1| have (at most) �n/2� words, and A1

and B1 have (at most) �n/2� words, the number K(n) of word multiplications

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19469-3 - Modern Computer Arithmetic
Richard P. Brent and Paul Zimmermann
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521194693

6 Integer arithmetic

satisfies the recurrence K(n) = n2 for n < n0, and K(n) = 2K(�n/2�) +
K(�n/2�) for n ≥ n0. Assume 2�−1n0 < n ≤ 2�n0 with
 ≥ 1. Then K(n)
is the sum of three K(j) values with j ≤ 2�−1n0, so at most 3� K(j) with
j ≤ n0. Thus, K(n) ≤ 3�max(K(n0), (n0 − 1)2), which gives K(n) ≤ Cnα

with C = 31−lg(n0)max(K(n0), (n0 − 1)2).

Different variants of Karatsuba’s algorithm exist; the variant presented here
is known as the subtractive version. Another classical one is the additive ver-
sion, which uses A0+A1 and B0+B1 instead of |A0−A1| and |B0−B1|. How-
ever, the subtractive version is more convenient for integer arithmetic, since it
avoids the possible carries in A0 + A1 and B0 + B1, which require either an
extra word in these sums, or extra additions.

The efficiency of an implementation of Karatsuba’s algorithm depends heav-
ily on memory usage. It is important to avoid allocating memory for the inter-
mediate results |A0 − A1|, |B0 − B1|, C0, C1, and C2 at each step (although
modern compilers are quite good at optimizing code and removing unneces-
sary memory references). One possible solution is to allow a large temporary
storage of m words, used both for the intermediate results and for the recur-
sive calls. It can be shown that an auxiliary space of m = 2n words – or even
m = O(log n) – is sufficient (see Exercises 1.7 and 1.8).

Since the product C2 is used only once, it may be faster to have auxiliary
routines KaratsubaAddmul and KaratsubaSubmul that accumulate their re-
sults, calling themselves recursively, together with KaratsubaMultiply (see
Exercise 1.10).

The version presented here uses ∼4n additions (or subtractions): 2× (n/2)
to compute |A0 − A1| and |B0 − B1|, then n to add C0 and C1, again n to
add or subtract C2, and n to add (C0 + C1 − sAsBC2)βk to C0 + C1β

2k. An
improved scheme uses only ∼7n/2 additions (see Exercise 1.9).

When considered as algorithms on polynomials, most fast multiplication
algorithms can be viewed as evaluation/interpolation algorithms. Karatsuba’s
algorithm regards the inputs as polynomials A0+A1x and B0+B1x evaluated
at x = βk; since their product C(x) is of degree 2, Lagrange’s interpolation
theorem says that it is sufficient to evaluate C(x) at three points. The subtrac-
tive version evaluates1 C(x) at x = 0,−1,∞, whereas the additive version
uses x = 0,+1,∞.

1.3.3 Toom–Cook multiplication

Karatsuba’s idea readily generalizes to what is known as Toom–Cook r-way
multiplication. Write the inputs as a0+· · ·+ar−1x

r−1 and b0+· · ·+br−1x
r−1,

1 Evaluating C(x) at ∞ means computing the product A1B1 of the leading coefficients.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19469-3 - Modern Computer Arithmetic
Richard P. Brent and Paul Zimmermann
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521194693

1.3 Multiplication 7

with x = βk, and k = �n/r�. Since their product C(x) is of degree 2r − 2,
it suffices to evaluate it at 2r − 1 distinct points to be able to recover C(x),
and in particular C(βk). If r is chosen optimally, Toom–Cook multiplication
of n-word numbers takes time n1+O(1/

√
log n).

Most references, when describing subquadratic multiplication algorithms,
only describe Karatsuba and FFT-based algorithms. Nevertheless, the Toom–
Cook algorithm is quite interesting in practice.

Toom–Cook r-way reduces one n-word product to 2r− 1 products of about
n/r words, thus costs O(nν) with ν = log(2r − 1)/ log r. However, the con-
stant hidden by the big-O notation depends strongly on the evaluation and
interpolation formulæ, which in turn depend on the chosen points. One possi-
bility is to take −(r − 1), . . . ,−1, 0, 1, . . . , (r − 1) as evaluation points.

The case r = 2 corresponds to Karatsuba’s algorithm (§1.3.2). The case
r = 3 is known as Toom–Cook 3-way, sometimes simply called “the Toom–
Cook algorithm”. Algorithm ToomCook3 uses the evaluation points 0, 1, −1,
2, ∞, and tries to optimize the evaluation and interpolation formulæ.

Algorithm 1.4 ToomCook3
Input: two integers 0 ≤ A,B < βn

Output: AB := c0 + c1β
k + c2β

2k + c3β
3k + c4β

4k with k = �n/3�
Require: a threshold n1 ≥ 3

1: if n < n1 then return KaratsubaMultiply(A,B)
2: write A = a0 + a1x + a2x

2, B = b0 + b1x + b2x
2 with x = βk.

3: v0 ← ToomCook3(a0, b0)
4: v1 ← ToomCook3(a02+a1, b02+b1) where a02 ← a0+a2, b02 ← b0+b2

5: v−1 ← ToomCook3(a02 − a1, b02 − b1)
6: v2 ← ToomCook3(a0 + 2a1 + 4a2, b0 + 2b1 + 4b2)
7: v∞ ← ToomCook3(a2, b2)
8: t1 ← (3v0 + 2v−1 + v2)/6 − 2v∞, t2 ← (v1 + v−1)/2
9: c0 ← v0, c1 ← v1 − t1, c2 ← t2 − v0 − v∞, c3 ← t1 − t2, c4 ← v∞.

The divisions at step 8 are exact; if β is a power of two, the division by 6
can be done using a division by 2 – which consists of a single shift – followed
by a division by 3 (see §1.4.7).

Toom–Cook r-way has to invert a (2r− 1)× (2r− 1) Vandermonde matrix
with parameters the evaluation points; if we choose consecutive integer points,
the determinant of that matrix contains all primes up to 2r − 2. This proves
that division by (a multiple of) 3 can not be avoided for Toom–Cook 3-way
with consecutive integer points. See Exercise 1.14 for a generalization of this
result.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19469-3 - Modern Computer Arithmetic
Richard P. Brent and Paul Zimmermann
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521194693

8 Integer arithmetic

1.3.4 Use of the fast Fourier transform (FFT)

Most subquadratic multiplication algorithms can be seen as evaluation-inter-
polation algorithms. They mainly differ in the number of evaluation points, and
the values of those points. However, the evaluation and interpolation formulæ
become intricate in Toom–Cook r-way for large r, since they involve O(r2)
scalar operations. The fast Fourier transform (FFT) is a way to perform evalu-
ation and interpolation efficiently for some special points (roots of unity) and
special values of r. This explains why multiplication algorithms with the best
known asymptotic complexity are based on the FFT.

There are different flavours of FFT multiplication, depending on the ring
where the operations are performed. The Schönhage–Strassen algorithm, with
a complexity of O(n log n log log n), works in the ring Z/(2n + 1)Z. Since it
is based on modular computations, we describe it in Chapter 2.

Other commonly used algorithms work with floating-point complex num-
bers. A drawback is that, due to the inexact nature of floating-point computa-
tions, a careful error analysis is required to guarantee the correctness of the im-
plementation, assuming an underlying arithmetic with rigorous error bounds.
See Theorem 3.6 in Chapter 3.

We say that multiplication is in the FFT range if n is large and the multi-
plication algorithm satisfies M(2n) ∼ 2M(n). For example, this is true if the
Schönhage–Strassen multiplication algorithm is used, but not if the classical
algorithm or Karatsuba’s algorithm is used.

1.3.5 Unbalanced multiplication

The subquadratic algorithms considered so far (Karatsuba and Toom–Cook)
work with equal-size operands. How do we efficiently multiply integers of dif-
ferent sizes with a subquadratic algorithm? This case is important in practice,
but is rarely considered in the literature. Assume the larger operand has size
m, and the smaller has size n ≤ m, and denote by M(m,n) the corresponding
multiplication cost.

If evaluation-interpolation algorithms are used, the cost depends mainly on
the size of the result, i.e. m + n, so we have M(m,n) ≤ M((m + n)/2), at
least approximately. We can do better than M((m+n)/2) if n is much smaller
than m, for example M(m, 1) = O(m).

When m is an exact multiple of n, say m = kn, a trivial strategy is to cut the
larger operand into k pieces, giving M(kn, n) = kM(n) + O(kn). However,
this is not always the best strategy, see Exercise 1.16.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19469-3 - Modern Computer Arithmetic
Richard P. Brent and Paul Zimmermann
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521194693

1.3 Multiplication 9

When m is not an exact multiple of n, several strategies are possible:

• split the two operands into an equal number of pieces of unequal sizes;
• or split the two operands into different numbers of pieces.

Each strategy has advantages and disadvantages. We discuss each in turn.

First strategy: equal number of pieces of unequal sizes

Consider for example Karatsuba multiplication, and let K(m,n) be the num-
ber of word-products for an m × n product. Take for example m = 5, n = 3.
A natural idea is to pad the smaller operand to the size of the larger one. How-
ever, there are several ways to perform this padding, as shown in the following
figure, where the “Karatsuba cut” is represented by a double column:

a4 a3 a2 a1 a0

b2 b1 b0

A × B

a4 a3 a2 a1 a0

b2 b1 b0

A × (βB)

a4 a3 a2 a1 a0

b2 b1 b0

A × (β2B)

The left variant leads to two products of size 3, i.e. 2K(3, 3), the middle one to
K(2, 1)+K(3, 2)+K(3, 3), and the right one to K(2, 2)+K(3, 1)+K(3, 3),
which give respectively 14, 15, 13 word-products.

However, whenever m/2 ≤ n ≤ m, any such “padding variant” will re-
quire K(�m/2�, �m/2�) for the product of the differences (or sums) of the
low and high parts from the operands, due to a “wrap-around” effect when
subtracting the parts from the smaller operand; this will ultimately lead to a
cost similar to that of an m×m product. The “odd–even scheme” of Algorithm
OddEvenKaratsuba (see also Exercise 1.13) avoids this wrap-around. Here is
an example of this algorithm for m = 3 and n = 2. Take A = a2x

2 +a1x+a0

and B = b1x + b0. This yields A0 = a2x + a0, A1 = a1, B0 = b0, B1 = b1;
thus, C0 = (a2x + a0)b0, C1 = (a2x + a0 + a1)(b0 + b1), C2 = a1b1.

Algorithm 1.5 OddEvenKaratsuba

Input: A =
∑m−1

0 aix
i, B =

∑n−1
0 bjx

j , m ≥ n ≥ 1
Output: A · B

if n = 1 then return
∑m−1

0 aib0x
i

write A = A0(x2) + xA1(x2), B = B0(x2) + xB1(x2)
C0 ← OddEvenKaratsuba(A0, B0)
C1 ← OddEvenKaratsuba(A0 + A1, B0 + B1)
C2 ← OddEvenKaratsuba(A1, B1)
return C0(x2) + x(C1 − C0 − C2)(x2) + x2C2(x2).

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19469-3 - Modern Computer Arithmetic
Richard P. Brent and Paul Zimmermann
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521194693

10 Integer arithmetic

We therefore get K(3, 2) = 2K(2, 1) + K(1) = 5 with the odd–even
scheme. The general recurrence for the odd–even scheme is

K(m,n) = 2K(�m/2�, �n/2�) + K(�m/2�, �n/2�),

instead of

K(m,n) = 2K(�m/2�, �m/2�) + K(�m/2�, n − �m/2�)

for the classical variant, assuming n > m/2. We see that the second parameter
in K(·, ·) only depends on the smaller size n for the odd–even scheme.

As for the classical variant, there are several ways of padding with the odd–
even scheme. Consider m = 5, n = 3, and write A := a4x

4 + a3x
3 + a2x

2 +
a1x + a0 = xA1(x2) + A0(x2), with A1(x) = a3x + a1, A0(x) = a4x

2 +
a2x+ a0; and B := b2x

2 + b1x+ b0 = xB1(x2)+B0(x2), with B1(x) = b1,
B0(x) = b2x+b0. Without padding, we write AB = x2(A1B1)(x2)+x((A0+
A1)(B0 + B1)−A1B1 −A0B0)(x2) + (A0B0)(x2), which gives K(5, 3) =
K(2, 1) + 2K(3, 2) = 12. With padding, we consider xB = xB′

1(x
2) +

B′
0(x

2), with B′
1(x) = b2x+b0, B′

0 = b1x. This gives K(2, 2) = 3 for A1B
′
1,

K(3, 2) = 5 for (A0 + A1)(B′
0 + B′

1), and K(3, 1) = 3 for A0B
′
0 – taking

into account the fact that B′
0 has only one non-zero coefficient – thus, a total

of 11 only.
Note that when the variable x corresponds to say β = 264, Algorithm

OddEvenKaratsuba as presented above is not very practical in the integer
case, because of a problem with carries. For example, in the sum A0 + A1 we
have �m/2� carries to store. A workaround is to consider x to be say β10, in
which case we have to store only one carry bit for ten words, instead of one
carry bit per word.

The first strategy, which consists in cutting the operands into an equal num-
ber of pieces of unequal sizes, does not scale up nicely. Assume for example
that we want to multiply a number of 999 words by another number of 699
words, using Toom–Cook 3-way. With the classical variant – without padding –
and a “large” base of β333, we cut the larger operand into three pieces of 333
words and the smaller one into two pieces of 333 words and one small piece of
33 words. This gives four full 333× 333 products – ignoring carries – and one
unbalanced 333 × 33 product (for the evaluation at x = ∞). The “odd–even”
variant cuts the larger operand into three pieces of 333 words, and the smaller
operand into three pieces of 233 words, giving rise to five equally unbalanced
333 × 233 products, again ignoring carries.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19469-3 - Modern Computer Arithmetic
Richard P. Brent and Paul Zimmermann
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521194693

