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Introduction

This book is concerned with random matrices. Given the ubiquitous role that
matrices play in mathematics and its application in the sciences and engineer-
ing, it seems natural that the evolution of probability theory would eventually
pass through random matrices. The reality, however, has been more complicated
(and interesting). Indeed, the study of random matrices, and in particular the
properties of their eigenvalues, has emerged from the applications, first in data
analysis (in the early days of statistical sciences, going back to Wishart [Wis28]),
and later as statistical models for heavy-nuclei atoms, beginning with the semi-
nal work of Wigner [Wig55]. Still motivated by physical applications, at the able
hands of Wigner, Dyson, Mehta and co-workers, a mathematical theory of the
spectrum of random matrices began to emerge in the early 1960s, and links with
various branches of mathematics, including classical analysis and number theory,
were established. While much progress was initially achieved using enumerative
combinatorics, gradually, sophisticated and varied mathematical tools were intro-
duced: Fredholm determinants (in the 1960s), diffusion processes (in the 1960s),
integrable systems (in the 1980s and early 1990s), and the Riemann–Hilbert prob-
lem (in the 1990s) all made their appearance, as well as new tools such as the
theory of free probability (in the 1990s). This wide array of tools, while attest-
ing to the vitality of the field, presents, however, several formidable obstacles to
the newcomer, and even to the expert probabilist. Indeed, while much of the re-
cent research uses sophisticated probabilistic tools, it builds on layers of common
knowledge that, in the aggregate, few people possess.

Our goal in this book is to present a rigorous introduction to the basic theory
of random matrices that would be sufficiently self-contained to be accessible to
graduate students in mathematics or related sciences who have mastered probabil-
ity theory at the graduate level, but have not necessarily been exposed to advanced
notions of functional analysis, algebra or geometry. With such readers in mind, we
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2 1. INTRODUCTION

present some background material in the appendices, that novice and expert alike
can consult; most material in the appendices is stated without proof, although the
details of some specialized computations are provided.

Keeping in mind our stated emphasis on accessibility over generality, the book
is essentially divided into two parts. In Chapters 2 and 3, we present a self-
contained analysis of random matrices, quickly focusing on the Gaussian ensem-
bles and culminating in the derivation of the gap probabilities at 0 and the Tracy–
Widom law. These chapters can be read with very little background knowledge,
and are particularly suitable for an introductory study. In the second part of the
book, Chapters 4 and 5, we use more advanced techniques, requiring more exten-
sive background, to emphasize and generalize certain aspects of the theory, and to
introduce the theory of free probability.

So what is a random matrix, and what questions are we about to study? Through-
out, let F = R or F = C, and set β = 1 in the former case and β = 2 in the latter. (In
Section 4.1, we will also consider the case F = H, the skew-field of quaternions,
see Appendix E for definitions and details.) Let MatN(F) denote the space of N-

by-N matrices with entries in F, and let H
(β )

N denote the subset of self-adjoint
matrices (i.e., real symmetric if β = 1 and Hermitian if β = 2). One can always

consider the sets MatN(F) and H
(β )

N , β = 1,2, as submanifolds of an appropriate
Euclidean space, and equip it with the induced topology and (Borel) sigma-field.

Recall that a probability space is a triple (Ω,F ,P) so that F is a sigma-algebra
of subsets of Ω and P is a probability measure on (Ω,F ). In that setting, a random
matrix XN is a measurable map from (Ω,F ) to MatN(F).

Our main interest is in the eigenvalues of random matrices. Recall that the
eigenvalues of a matrix H ∈MatN(F) are the roots of the characteristic polynomial
PN(z) = det(zIN −H), with IN the identity matrix. Therefore, on the (open) set
where the eigenvalues are all simple, they are smooth functions of the entries of
XN (a more complete discussion can be found in Section 4.1).

We will be mostly concerned in this book with self-adjoint matrices H ∈H
(β )

N ,
β = 1,2, in which case the eigenvalues are all real and can be ordered. Thus,

for H ∈ H
(β )

N , we let λ1(H) ≤ ·· · ≤ λN(H) be the eigenvalues of H. A conse-
quence of the perturbation theory of normal matrices (see Lemma A.4) is that the
eigenvalues {λi(H)} are continuous functions of H (this also follows from the
Hoffman–Wielandt theorem, Theorem 2.1.19). In particular, if XN is a random
matrix then the eigenvalues {λi(XN)} are random variables.

We present now a guided tour of the book. We begin by considering Wigner
matrices in Chapter 2. These are symmetric (or Hermitian) matrices XN whose
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1. INTRODUCTION 3

entries are independent and identically distributed, except for the symmetry con-
straints. For x ∈ R, let δx denote the Dirac measure at x, that is, the unique prob-
ability measure satisfying

∫
f dδx = f (x) for all continuous functions on R. Let

LN = N−1 ∑N
i=1 δλi(XN) denote the empirical measure of the eigenvalues of XN .

Wigner’s Theorem (Theorem 2.1.1) asserts that, under appropriate assumptions
on the law of the entries, LN converges (with respect to the weak convergence
of measures) towards a deterministic probability measure, the semicircle law. We
present in Chapter 2 several proofs of Wigner’s Theorem. The first, in Section 2.1,
involves a combinatorial machinery that is also exploited to yield central limit the-
orems and estimates on the spectral radius of XN . After first introducing in Section
2.3 some useful estimates on the deviation between the empirical measure and its
mean, we define in Section 2.4 the Stieltjes transform of measures and use it to
give another quick proof of Wigner’s Theorem.

Having discussed techniques valid for entries distributed according to general
laws, we turn attention to special situations involving additional symmetry. The
simplest of these concerns the Gaussian ensembles, the GOE and GUE, so named
because their law is invariant under conjugation by orthogonal (resp., unitary)
matrices. The latter extra symmetry is crucial in deriving in Section 2.5 an explicit
joint distribution for the eigenvalues (thus effectively reducing consideration from
a problem involving order of N2 random variables, namely the matrix entries, to
one involving only N variables). (The GSE, or Gaussian symplectic ensemble,
also shares this property and is discussed briefly.) A large deviations principle for
the empirical distribution, which leads to yet another proof of Wigner’s Theorem,
follows in Section 2.6.

The expression for the joint density of the eigenvalues in the Gaussian ensem-
bles is the starting point for obtaining local information on the eigenvalues. This
is the topic of Chapter 3. The bulk of the chapter deals with the GUE, because
in that situation the eigenvalues form a determinantal process. This allows one
to effectively represent the probability that no eigenvalues are present in a set
as a Fredholm determinant, a notion that is particularly amenable to asymptotic
analysis. Thus, after representing in Section 3.2 the joint density for the GUE in
terms of a determinant involving appropriate orthogonal polynomials, the Hermite
polynomials, we develop in Section 3.4 in an elementary way some aspects of the
theory of Fredholm determinants. We then present in Section 3.5 the asymptotic
analysis required in order to study the gap probability at 0, that is the probabil-
ity that no eigenvalue is present in an interval around the origin. Relevant tools,
such as the Laplace method, are developed along the way. Section 3.7 repeats this
analysis for the edge of the spectrum, introducing along the way the method of
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4 1. INTRODUCTION

steepest descent. The link with integrable systems and the Painlevé equations is
established in Sections 3.6 and 3.8.

As mentioned before, the eigenvalues of the GUE are an example of a deter-
minantal process. The other Gaussian ensembles (GOE and GSE) do not fall into
this class, but they do enjoy a structure where certain Pfaffians replace determi-
nants. This leads to a considerably more involved analysis, the details of which
are provided in Section 3.9.

Chapter 4 is a hodge-podge of results whose common feature is that they all
require new tools. We begin in Section 4.1 with a re-derivation of the joint law
of the eigenvalues of the Gaussian ensemble, in a geometric framework based on
Lie theory. We use this framework to derive the expressions for the joint distri-
bution of eigenvalues of Wishart matrices, of random matrices from the various
unitary groups and of matrices related to random projectors. Section 4.2 studies
in some depth determinantal processes, including their construction, associated
central limit theorems, convergence and ergodic properties. Section 4.3 studies
what happens when in the GUE (or GOE), the Gaussian entries are replaced by
Brownian motions. The powerful tools of stochastic analysis can then be brought
to bear and lead to functional laws of large numbers, central limit theorems and
large deviations. Section 4.4 consists of an in-depth treatment of concentration
techniques and their application to random matrices; it is a generalization of the
discussion in the short Section 2.3. Finally, in Section 4.5, we study a family of
tri-diagonal matrices, parametrized by a parameter β , whose distribution of eigen-
values coincides with that of members of the Gaussian ensembles for β = 1,2,4.
The study of the maximal eigenvalue for this family is linked to the spectrum of
an appropriate random Schrödinger operator.

Chapter 5 is devoted to free probability theory, a probability theory for certain
noncommutative variables, equipped with a notion of independence called free
independence. Invented in the early 1990s, free probability theory has become
a versatile tool for analyzing the laws of noncommutative polynomials in several
random matrices, and of the limits of the empirical measure of eigenvalues of such
polynomials. We develop the necessary preliminaries and definitions in Section
5.2, introduce free independence in Section 5.3, and discuss the link with random
matrices in Section 5.4. We conclude the chapter with Section 5.5, in which we
study the convergence of the spectral radius of noncommutative polynomials of
random matrices.

Each chapter ends with bibliographical notes. These are not meant to be com-
prehensive, but rather guide the reader through the enormous literature and give
some hint of recent developments. Although we have tried to represent accurately
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1. INTRODUCTION 5

the historical development of the subject, we have necessarily omitted important
references, misrepresented facts, or plainly erred. Our apologies to those authors
whose work we have thus unintentionally slighted.

Of course, we have barely scratched the surface of the subject of random ma-
trices. We mention now the most glaring omissions, together with references to
some recent books that cover these topics. We have not discussed the theory of the
Riemann–Hilbert problem and its relation to integrable systems, Painlevé equa-
tions, asymptotics of orthogonal polynomials and random matrices. The interested
reader is referred to the books [FoIKN06], [Dei99] and [DeG09] for an in-depth
treatment. We do not discuss the relation between asymptotics of random matri-
ces and combinatorial problems – a good summary of these appears in [BaDS09].
We barely discuss applications of random matrices, and in particular do not re-
view the recent increase in applications to statistics or communication theory –
for a nice introduction to the latter we refer to [TuV04]. We have presented only a
partial discussion of ensembles of matrices that possess explicit joint distribution
of eigenvalues. For a more complete discussion, including also the case of non-
Hermitian matrices that are not unitary, we refer the reader to [For05]. Finally,
we have not discussed the link between random matrices and number theory; the
interested reader should consult [KaS99] for a taste of that link. We further re-
fer to the bibliographical notes for additional reading, less glaring omissions and
references.
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2

Real and complex Wigner matrices

2.1 Real Wigner matrices: traces, moments and combinatorics

We introduce in this section a basic model of random matrices. Nowhere do we
attempt to provide the weakest assumptions or sharpest results available. We point
out in the bibliographical notes (Section 2.7) some places where the interested
reader can find finer results.

Start with two independent families of independent and identically distributed
(i.i.d.) zero mean, real-valued random variables {Zi, j}1≤i< j and {Yi}1≤i, such that
EZ2

1,2 = 1 and, for all integers k ≥ 1,

rk := max
(

E|Z1,2|k,E|Y1|k
)

< ∞ . (2.1.1)

Consider the (symmetric) N ×N matrix XN with entries

XN( j, i) = XN(i, j) =
{

Zi, j/
√

N , if i < j,
Yi/

√
N , if i = j.

(2.1.2)

We call such a matrix a Wigner matrix, and if the random variables Zi, j and Yi are
Gaussian, we use the term Gaussian Wigner matrix. The case of Gaussian Wigner
matrices in which EY 2

1 = 2 is of particular importance, and for reasons that will
become clearer in Chapter 3, such matrices (rescaled by

√
N) are referred to as

Gaussian orthogonal ensemble (GOE) matrices.

Let λ N
i denote the (real) eigenvalues of XN , with λ N

1 ≤ λ N
2 ≤ ·· · ≤ λ N

N , and
define the empirical distribution of the eigenvalues as the (random) probability
measure on R defined by

LN =
1
N

N

∑
i=1

δλ N
i

.

Define the semicircle distribution (or law) as the probability distribution σ(x)dx
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2.1 TRACES, MOMENTS AND COMBINATORICS 7

on R with density

σ(x) =
1

2π

√
4− x21|x|≤2 . (2.1.3)

The following theorem, contained in [Wig55], can be considered the starting point
of random matrix theory (RMT).

Theorem 2.1.1 (Wigner) For a Wigner matrix, the empirical measure LN con-
verges weakly, in probability, to the semicircle distribution.

In greater detail, Theorem 2.1.1 asserts that for any f ∈Cb(R), and any ε > 0,

lim
N→∞

P(|〈LN , f 〉−〈σ , f 〉| > ε) = 0 .

Remark 2.1.2 The assumption (2.1.1) that rk < ∞ for all k is not really needed.
See Theorem 2.1.21 in Section 2.1.5.

We will see many proofs of Wigner’s Theorem 2.1.1. In this section, we give
a direct combinatorics-based proof, mimicking the original argument of Wigner.
Before doing so, however, we need to discuss some properties of the semicircle
distribution.

2.1.1 The semicircle distribution, Catalan numbers and Dyck paths

Define the moments mk := 〈σ ,xk〉 . Recall the Catalan numbers

Ck =

(
2k
k

)

k +1
=

(2k)!
(k +1)!k!

.

We now check that, for all integers k ≥ 1,

m2k = Ck , m2k+1 = 0 . (2.1.4)

Indeed, m2k+1 = 0 by symmetry, while

m2k =
∫ 2

−2
x2kσ(x)dx =

2 ·22k

π

∫ π/2

−π/2
sin2k(θ)cos2(θ)dθ

=
2 ·22k

π

∫ π/2

−π/2
sin2k(θ)dθ − (2k +1)m2k .

Hence,

m2k =
2 ·22k

π(2k +2)

∫ π/2

−π/2
sin2k(θ)dθ =

4(2k−1)
2k +2

m2k−2 , (2.1.5)
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8 2. WIGNER MATRICES

from which, together with m0 = 1, one concludes (2.1.4).

The Catalan numbers possess many combinatorial interpretations. To introduce
a first one, say that an integer-valued sequence {Sn}0≤n≤� is a Bernoulli walk of
length � if S0 = 0 and |St+1 −St | = 1 for t ≤ �−1. Of particular relevance here is
the fact that Ck counts the number of Dyck paths of length 2k, that is, the number
of nonnegative Bernoulli walks of length 2k that terminate at 0. Indeed, let βk

denote the number of such paths. A classical exercise in combinatorics is

Lemma 2.1.3 βk =Ck < 4k. Further, the generating function β̂ (z) := 1+∑∞
k=1 zkβk

satisfies, for |z| < 1/4,

β̂ (z) =
1−√

1−4z
2z

. (2.1.6)

Proof of Lemma 2.1.3 Let Bk denote the number of Bernoulli walks {Sn} of
length 2k that satisfy S2k = 0, and let B̄k denote the number of Bernoulli walks
{Sn} of length 2k that satisfy S2k = 0 and St < 0 for some t < 2k. Then, βk =
Bk − B̄k. By reflection at the first hitting of −1, one sees that B̄k equals the number
of Bernoulli walks {Sn} of length 2k that satisfy S2k = −2. Hence,

βk = Bk − B̄k =
(

2k
k

)
−

(
2k

k−1

)
= Ck .

Turning to the evaluation of β̂ (z), considering the first return time to 0 of the
Bernoulli walk {Sn} gives the relation

βk =
k

∑
j=1

βk− jβ j−1 , k ≥ 1 , (2.1.7)

with the convention that β0 = 1. Because the number of Bernoulli walks of length
2k is bounded by 4k, one has that βk ≤ 4k, and hence the function β̂ (z) is well
defined and analytic for |z| < 1/4. But, substituting (2.1.7),

β̂ (z)−1 =
∞

∑
k=1

zk
k

∑
j=1

βk− jβ j−1 = z
∞

∑
k=0

zk
k

∑
j=0

βk− jβ j ,

while

β̂ (z)2 =
∞

∑
k,k′=0

zk+k′βkβk′ =
∞

∑
q=0

q

∑
�=0

zqβq−�β� .

Combining the last two equations, one sees that

β̂ (z) = 1+ zβ̂ (z)2 ,
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2.1 TRACES, MOMENTS AND COMBINATORICS 9

from which (2.1.6) follows (using that β̂ (0) = 1 to choose the correct branch of
the square-root). 
�
We note in passing that, expanding (2.1.6) in power series in z in a neighborhood
of zero, one gets (for |z| < 1/4)

β̂ (z) =
2∑∞

k=1
zk(2k−2)!
k!(k−1)!

2z
=

∞

∑
k=0

(2k)!
k!(k +1)!

zk =
∞

∑
k=0

zkCk ,

which provides an alternative proof of the fact that βk = Ck.

Another useful interpretation of the Catalan numbers is that Ck counts the num-
ber of rooted planar trees with k edges. (A rooted planar tree is a planar graph
with no cycles, with one distinguished vertex, and with a choice of ordering at
each vertex; the ordering defines a way to “explore” the tree, starting at the root.)
It is not hard to check that the Dyck paths of length 2k are in bijection with such
rooted planar trees. See the proof of Lemma 2.1.6 in Section 2.1.3 for a formal
construction of this bijection.

We note in closing that a third interpretation of the Catalan numbers, particu-
larly useful in the context of Chapter 5, is that they count the non-crossing parti-
tions of the ordered set Kk := {1,2, . . . ,k}.

Definition 2.1.4 A partition of the set Kk := {1,2, . . . ,k} is called crossing if there
exists a quadruple (a,b,c,d) with 1 ≤ a < b < c < d ≤ k such that a,c belong to
one part while b,d belong to another part. A partition which is not crossing is a
non-crossing partition.

Non-crossing partitions form a lattice with respect to refinement. A look at Fig-
ure 2.1.1 should explain the terminology “non-crossing”: one puts the points
1, . . . ,k on the circle, and connects each point with the next member of its part
(in cyclic order) by an internal path. Then, the partition is non-crossing if this can
be achieved without arcs crossing each other.

It is not hard to check that Ck is indeed the number γk of non-crossing partitions
of Kk. To see that, let π be a non-crossing partition of Kk and let j denote the
largest element connected to 1 (with j = 1 if the part containing 1 is the set {1}).
Then, because π is non-crossing, it induces non-crossing partitions on the sets
{1, . . . , j−1} and { j +1, . . . ,k}. Therefore, γk = ∑k

j=1 γk− jγ j−1. With γ1 = 1, and
comparing with (2.1.7), one sees that βk = γk.

Exercise 2.1.5 Prove that for z ∈ C such that z �∈ [−2,2], the Stieltjes transform
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10 2. WIGNER MATRICES
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Fig. 2.1.1. Non-crossing (left, (1,4),(2,3),(5,6)) and crossing (right, (1,5),(2,3),(4,6))
partitions of the set K6.

S(z) of the semicircle law (see Definition 2.4.1) equals

S(z) =
∫

1
λ − z

σ(dλ ) =
−z+

√
z2 −4

2z
.

Hint: Either use the residue theorem, or relate S(z) to the generating function β̂ (z),
see Remark 2.4.2.

2.1.2 Proof #1 of Wigner’s Theorem 2.1.1

Define the probability distribution L̄N = ELN by the relation 〈L̄N , f 〉 = E〈LN , f 〉
for all f ∈Cb, and set mN

k := 〈L̄N ,xk〉. Theorem 2.1.1 follows from the following
two lemmas.

Lemma 2.1.6 For every k ∈ N,

lim
N→∞

mN
k = mk .

(See (2.1.4) for the definition of mk.)

Lemma 2.1.7 For every k ∈ N and ε > 0,

lim
N→∞

P
(∣∣∣〈LN ,xk〉−〈L̄N ,xk〉

∣∣∣ > ε
)

= 0 .

Indeed, assume that Lemmas 2.1.6 and 2.1.7 have been proved. To conclude the
proof of Theorem 2.1.1, one needs to check that for any bounded continuous func-
tion f ,

lim
N→∞

〈LN , f 〉 = 〈σ , f 〉 , in probability. (2.1.8)
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