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Introduction

Note: this introduction is written in an intuitive style, so a scientifically ori-

ented non-mathematician might get something out of it. It is the only part of

the book that requires no mathematical expertise.

Question: What is ergodic theory?

Let’s start with two examples.

Example 1: Imagine a potentially oddly shaped billiard table having no pock-

ets and a frictionless surface. Part of the table is painted white and part of the

table is painted black. A billiard ball is placed in a random spot and shot along

a trajectory with a random velocity. You meanwhile are blindfolded and don’t

know the shape of the table. However, as the billiard ball careens around, you

receive constant updates on when it’s in the black part of the table, and when

it’s in the white part of the table. From this information you are to deduce

as much as you can about the entire setup: for example, whether or not it is

possible that the table is in the shape of a rectangle.

Example 2: (This example is extremely vague by intention.) Imagine you are

receiving a sequence of signals from outer space. The signal seems to be in

some sense random, but there are recurring patterns whose frequencies are

stationary (that is, do not alter over time). We are unable to detect a precise

signal but we can encode it by interpreting five successive signals as one signal:

unfortunately, this code loses information. Furthermore, we make occasional

mistakes. We wish to get as much knowledge as possible about the original

process.

Measure preserving transformations. The subject matter encompassing the

previous two examples is called ergodic theory. Ergodic theory models situ-

ations (like the examples) under the abstraction of measure-preserving trans-

formations. To understand that concept, we need to understand what measures

are and what transformations are.

A measure is a concept of size that tells you how big a set is, or, in the lan-

guage of probability, how probable an event is. (A probability space is a space

whose total measure is equal to 1.) It has to act like a notion of size should: the

measure of the union of two disjoint sets has to equal the sum of the measures

of the sets, for example. A transformation is a way of mapping a space to itself
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2 Introduction

by assigning one point to another. In many modeling applications, the transfor-

mation indicates evolution in time: for example, it may map the position and

direction of a billiard ball at the current time to the position and direction of

the ball one second later.

Ergodic theory is the study of transformations on probability spaces that

preserve measure. So, for example, if a set A of points has measure 1
3

, and

a transformation T is measure-preserving, then the set of points which are

mapped into A by T will also have measure 1
3
. When the measure is interpreted

as a probability, the measure-preserving property indicates the stationarity

or time-invariance of the expected frequencies of certain events (like the

probability that the billiard ball of Example 1 lies in the white part of the table).

Processes. When you apply a transformation over and over, checking after

each application whether some event has occurred and recording the result, you

get a process. The language of processes and the language of transformations

are really just two different ways of describing the same thing. You can get

a process out of Example 1 if you record at one-second intervals, by writing

down either B or W , the location of the moving billiard ball. For example,

the output B BW W B . . . represents the ball having been in the black, black,

white, white and black areas at times 0, 1, 2, 3 and 4, respectively. You can

also get processes out of real world systems, without foreknowledge of any

transformation acting. For example, say you record each day at noon whether

it’s rainy or sunny by writing down R or S. If you did this every day into both

the future and the past, you would output a doubly infinite string of Rs and Ss,

thus: . . . S R RS(S)R R RS . . . Here the parentheses identify the current day (it

is sunny today, will be rainy tomorrow, and was sunny yesterday, etc.).

To transfer this example to the language of transformations, note that the set

of all doubly infinite strings of Rs and Ss forms a space, and a natural trans-

formation of this space is the shift, which moves time forward one day. (Hence

the shift takes the above sequence to . . . S R RSS(R)R RS . . .) An appropriate

measure can be derived from the probabilities of rain and sun respectively on

the various days. This measure will be preserved by the shift precisely when

the original process was stationary.

In this book, we will usually study measure-preserving transformations

using the language of stationary processes. Here is a summary of the important

concepts and theorems we will cover.

(1) Isomorphism: Suppose that in Example 1 we were to change which part of

the table is painted white and which is painted black. Then you would have

a different process. But our new process could end up being equivalent

to the original process in the sense that if you know the output of either

process infinitely far into both the past and future, it would tell you the
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output of the other process. Very roughly, one says that two processes are

isomorphic when there is a nice way to map outputs of one to outputs of the

other so that they determine each other. In general, determining whether

there is such a map can be nearly impossible; much of this book is about

ways to do it in a few cases.

(2) Ergodicity: An ergodic process or transformation is one that cannot be

expressed as a combination of two simpler processes (or transformations).

For example, consider the process that picks a random person and then

spits out an enormous sequence of Ls and Rs according to which hand that

person uses to twist open all the doorknobs they encounter their whole life.

That process is certainly not going to be ergodic because the character of

the output will be divided in a predictable way according to whether the

person chosen is left-handed or right-handed. Assuming the proportion of

left-handed people in the general population to be 0.09, the whole process

would then be expressible as 0.09 (left-hand process) + 0.91 (right-hand

process).

(3) Birkhoff ergodic theorem: When an ergodic transformation is repeatedly

applied to form an ergodic process, then with probability 1, the frequency

of time an output of that process spends in a given set is the measure of

that set, e.g. if the measure of a set is 1
3

, then it will spend (in an asymptotic

sense) 1
3

of the time in that set.

(4) Rohlin tower theorem: Fix an arbitrary positive integer, say 678. For any

measure-preserving transformation T that does not simply rotate finite sets

of points around, you can break almost the whole space into 678 equally

sized disjoint sets A1, . . . , A678 such that if you arrange the sets as the

rungs of a ladder, the transformation consists in simply walking up the

ladder; that is, T Ai = Ai+1.

(5) Shannon–McMillan–Breiman theorem: Consider an ergodic process that

spits out doubly infinite strings of as and bs. If you pick a random doubly

infinite string, then with probability 1, when you look at its sequence of

finite initial strings (e.g. a, ab, abb, abba, . . .), that sequence will have

probabilities that asymptotically approach a fixed rate of exponential

decay. Moreover, that rate of decay will not depend on the sequence you

choose.

(6) Entropy: The exponential rate of decay just mentioned is called the entropy

of the process. Recall that essentially all of the doubly infinite strings have

the same exponential decay rate. Call the ones that do reasonable names.

Then the number of reasonable names is approximately equal to the recip-

rocal of this exponentially decaying probability, that is, it is a quantity that

increases at a fixed exponential rate. Thus entropy can also be thought of as
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4 Introduction

being the asymptotic exponential growth rate of the number of reasonable

names.

(7) Kolmogorov entropy invariance: Any two isomorphic processes must have

the same entropy. This provides a quick way to identify two processes as

not being isomorphic, namely, having different entropies.

(8) Independent process: A stationary process on an alphabet in which the next

letter to come in the output string is always independent of the ones that

came previously is called an independent process. For example, repeatedly

rolling a die (even a loaded die) gives an independent process.

(9) Ornstein isomorphism theorem: Says that two stationary independent pro-

cesses are isomorphic if and only if they have the same entropy. Indeed,

the standard proofs of the theorem say even more, as they give a condition

which is natural to check in many cases such that any two processes that

are of equal entropy and satisfy the condition must be isomorphic. This

has led to the surprising realization that a great many classes of measure-

preserving systems that don’t seem at all similar to die rolling or coin

tossing are in fact isomorphic to independent processes.

The above list spans the core topics of isomorphism theory. In the final chapter

of the book, we touch briefly on additional topics in both isomorphism theory

and ergodic theory, more broadly construed. In an appendix, we list some of

our favorite open problems.
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Measure-theoretic preliminaries

1. Discussion. In this opening chapter, we offer a review of the basic facts we

need from measure theory for the rest of the book (it doubles as an introduc-

tion to our pedagogic method). For readers seeking a true introduction to the

subject, we recommend first perusing, e.g. Folland (1984); experts meanwhile

may safely jump to Chapter 2.

2. Comment. When an exercise is given in the middle of a proof, the end of

the exercise will be signaled by a dot: "

The conclusion of a proof is signaled by the box sign at the right margin, thus:

1.1. Basic definitions

In this subchapter, we discuss algebras, Ã -algebras, generation of a Ã -algebra

by a family of subsets, completion with respect to a measure and relevant

definitions.

3. Definition. Let � be a set. An algebra of subsets of � is a non-empty

collection A of subsets of � that is closed under finite unions and comple-

mentation. A Ã -algebra is a collection A of subsets of � that is closed under

countable unions and complementation.

4. Comment. Every algebra of subsets of � contains the trivial algebra

{',�}.

5. Exercise. Let � be a set and let C be a family of subsets of �. Show that the

intersection of all Ã -algebras of subsets of � containing C is itself a Ã -algebra.

6. Definition. Let � be a set and let C be a family of subsets of �. The

Ã -algebra generated by C is the intersection of all Ã -algebras of subsets of

� containing C.

7. Definition. Let A be an algebra of subsets of �. A premeasure on A is

a finitely additive set function p taking A to the non-negative reals that also
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6 Measure-theoretic preliminaries

never violates countable additivity except for “undefined” cases caused by A

not being a Ã -algebra.2

If A is a Ã -algebra, then p is called a measure.

8. Definition. Let � be a set, and let A be a Ã -algebra of subsets of �. The

pair (�,A) is called a measurable space, and the members of A are called

measurable sets. Next let ¿ be a probability measure defined on A; that is,

a measure satisfying ¿(�) = 1. The triple (�,A, ¿) is called a probability

space.

Let (�,A, ¿) be a probability space. An event is a measurable set, that is, a

member of A. Two events A and B are independent if ¿(A+ B) = ¿(A)¿(B).

Let (�,A, ¿) be a probability space. A null set is a set A * A with

¿(A) = 0. A is said to be complete with respect to ¿, or (�,A, ¿) is sim-

ply said to be complete, if all subsets of null sets are measurable (and hence

null sets).

9. Exercise. Let (�,B, ¿) be a probability space and suppose that B is

not complete with respect to ¿. Let A= {B * C : B *B, there exists a null

set D with C ¢ D}. Extend ¿ to A by the rule ¿(B * C) = ¿(B) for the

relevant cases. Show that this extension is well defined and that (�,A, ¿) is a

complete probability space.

10. Definition. The completion of a probability space (�,B, ¿) is the proba-

bility space (�,A, ¿) constructed in the previous exercise.

11. Definition. If A and B are sets, the symmetric difference of A and B is the

set of points in A or B but not both. We denote the symmetric difference by

A"B.

12. Definition. Suppose that (�,A, ¿) is a complete measure space and sup-

pose that C ¢ A is a family of measurable sets. We say that C generates A

mod zero if for every A * A there exists B in the Ã -algebra B generated by C

such that ¿(A"B) = 0.

13. Comment. Notice that this does not imply that B = A.

14. Definition. Let � be a set and denote its power set by P(�). An outer

measure on � is a non-increasing, countably sub-additive set function ¿7 from

P(�) to the non-negative reals taking the empty set to zero.3

2 That is to say, p : A ³ [0,>] and if (Ai )
>
i=1

¢ A is pairwise disjoint with A =
�>

i=1 Ai * A

then p(A) =
�>

i=1 p(Ai ). Notice that p(') = 0.
3 That is, ¿7 : P(�) ³ [0,>] with ¿7(') = 0, ¿7(A) f ¿7(B) whenever A ¢ B, and

¿7(
�>

i=1 Ai ) f
�>

i=1 ¿7(Ai ) for any sequence (Ai )
>
i=1

¢ P(�).
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1.2. Carathéodory’s theorem, isomorphism, Lebesgue spaces 7

1.2. Carathéodory’s theorem, isomorphism, Lebesgue spaces

In this subchapter we develop the machinery for constructing probability

spaces and determining when they are essentially the same. We use this

machinery to construct Lebesgue measure on the unit interval and define

Lebesgue spaces to be those spaces isomorphic to an interval space.

15. Convention. If (xn)>n=1 is a sequence, we use the notation (xn) ¢ X to

relate the fact that xn * X for all n.

16. Theorem. (Carathéodory; see e.g. Folland 1984, Theorem 1.11.) Let �

be a set, A an algebra of subsets of � and p a premeasure on A for which

p(�) = 1. For every B ¢ � let

¿7(B) = inf

�

>
�

i=1

p(Ai ) : (Ai )
>
i=1 ¢ A, B ¢

>
�

i=1

Ai

�

.

Let B = {B ¢ � : ¿7(B) + ¿7(Bc) = 1}. Then ¿7 is an outer measure on �

which agrees with p on A, B is a Ã -algebra containing A, and the restriction

¿ of ¿7 to B is a measure.

(Proof omitted.)

17. Exercise. Show that the measure space arrived at in an application of

Carathéodory’s theorem is complete.

We now give a couple of applications of Carathéodory’s theorem.

18. Definition. Let � be a countable set and let � = �Z. A cylinder set is

a subset of � you get by specifying values for finitely many (possibly zero)

coordinates.4 The support of a cylinder set is the set of coordinates whose

values are specified.5

19. Example. The set of (xi )
>
i=2> * � such that x0 = a, x17 = b and

x22 = c is a cylinder set. The support of this cylinder set is {22, 0, 17}.

20. Theorem. (Tychonoff; see e.g. Folland 1984, Theorem 4.43.) Let X i be

compact topological spaces, i * I, and let X =
"

i*I . Then X is compact in

the product topology.

21. Exercise. Prove Tychonoff’s theorem.

4 To be more precise: for r g 0 an integer, f1, f2, . . . , fr * Z and »1, . . . , »r ¢ �, set C =

C( f1, . . . , fr , »1, . . . , »r ) = {(xi )
>
i=2>

* � : x f j
= » j , 1 f j f r}. C is a cylinder set.

5 So the support of the cylinder set defined in the previous footnote is { f1, f2, . . . , fr }.
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8 Measure-theoretic preliminaries

22. Exercise.

(a) Show that the family A of unions of finite (possibly empty) collections of

cylinder sets in � = �Z forms an algebra. Then show that if � is finite and

(Ai )
>
i=1 are pairwise disjoint members of A whose union is a member of A

then only finitely many of the Ai are non-empty. Hint: Apply Tychonoff’s

theorem to �Z.

(b) (See, e.g. McCutchen 1999, Theorem 3.2.4.) If � is finite, any finitely

additive set function p from cylinder sets to the non-negative reals6 taking

� to 1 is extendable to a premeasure on A which may thereby be extended

to a measure by Carathéodory’s theorem.7

23. Exercise. Let � = [0, 1) and denote by A the set of unions of finite

(possibly empty), pairwise disjoint families of half-open intervals [a, b) ¢

[0, 1). Show that A is an algebra of sets. Put p
�

[a, b)
�

= b 2 a. Show that p

has a unique extension to a premeasure on A.

24. Definition. The outer measure ¿7 you get by applying Carathéodory’s

theorem to the premeasure p of the foregoing exercise is called Lebesgue outer

measure, which we denote by m7. We denote by L the Ã -algebra B coming

from Carathéodory’s theorem; members of L are called Lebesgue measurable

sets. The restriction of m7 to B is called Lebesgue measure, which we denote

by m.

25. Remark. Although we’ve only defined Lebesgue measure, Lebesgue mea-

surable sets, etc. here on the unit interval, one can of course extend this

to the whole line in the obvious way; readers should convince themselves

of this.

26. Definition. For A ¢ R, define the Lebesgue inner measure of A to be the

quantity m7(A) = sup{m(B) : B * L, B ¢ S}.8

27. Exercise. Prove that for any set A and any interval I , m7(A) = |I | 2

m7(I \ A).

6 In other words, if C1, . . . , Cr are pairwise disjoint cylinder sets whose union is a cylinder set C ,

then p(C) =
�r

i=1 p(Ci ).
7 It is instructive, and the reader is encouraged, to explore just what such a finitely additive func-

tion looks like. For a quick example, suppose that � = {a, d}. The cylinder set C1 that sees the

occurrence of “add” at the zero place (that is, C(0, 1, 2, a, d, d)) and the cylinder set C2 that

sees “ada” at the zero place are disjoint and their union is the cylinder set C3 that sees “ad” at

the zero place; hence any premeasure p must satisfy p(C1) + p(C2) = p(C3), but these are the

only sorts of conditions.
8 The reader should check that this supremum is a maximum; i.e. it is attained.
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1.2. Carathéodory’s theorem, isomorphism, Lebesgue spaces 9

28. Exercise. Show that for any Lebesgue measurable set A ¢ [0, 1],

m(A) = sup{m(K ) : K ¢ A, K is closed} and m(A) = inf{m(U ) : A ¢

U, U is open}. (We may sometimes say, accordingly, that Lebesgue measure

is inner regular with respect to closed sets and outer regular with respect to

open sets.)

29. Definition. Let (�,A) and (��,A�) be measurable spaces. A function

T : � ³ �� satisfying T 21 A� * A for every A� * A� is said to be

(A,A�)-measurable, or simply measurable when A and A� are understood.

Let (�,A, ¿) and (��,A�, ¿�) be probability spaces. A measurable function

T : � ³ �� satisfying ¿(T 21 A�) = ¿�(A�) for every A� * A� is said to be

measure-preserving.

30. Theorem. (Urysohn’s lemma; see e.g. Dudley 2002, Lemma 2.6.3.) Let X

be a normal topological space, and let A and B be disjoint closed subsets of

X. There exists a continuous function f : X ³ [0, 1] such that f (x) = 0 for

all x * A and f (x) = 1 for all x * B.

(Proof omitted.)

31. Exercise. Let (�,A, ¿) and (��,A�, ¿�) be measure spaces and suppose

that A� is generated by a family of sets B. Let T : � ³ ��. Show that:

(a) if T 21 B * A for every B * B then T is measurable;

(b) if ¿(T 21 B) = ¿�(B) for every B * B then T is measure-preserving.

32. Definition. Let (�,A, ¿) and (��,A�, ¿�) be probability spaces and sup-

pose Ã : � ³ �� is a measure-preserving transformation. We say that

Ã is a homomorphism, or a factor map, and that (��,A�, ¿�) is a factor of

(�,A, ¿).

33. Definition. Let (�,A, ¿) and (��,A�, ¿�) be probability spaces and sup-

pose T : � ³ �� is a homomorphism. If there exist full measure sets9 X ¢ �

and X � ¢ �� such that the restriction of T to X is a bijection to X �, and

T 21 : X � ³ X is measurable, then we will say that T is an isomorphism, and

that the spaces (�,A, ¿) and (��,A�, ¿�) are isomorphic.

34. Comment. When two spaces (�,A, ¿) and (��,A�, ¿�) are isomorphic,

then, once appropriate null sets are disregarded, they are “essentially the same

space”. In other words, they are in fact the same, up to relabeling.

35. Exercise. Show that “is isomorphic to” is an equivalence relation and that

completeness is an isomorphism invariant.

9 A set X ¢ � is said to be of full measure if ¿(� \ X) = 0.
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10 Measure-theoretic preliminaries

36. Convention. Our attitude toward null sets is that they “don’t count”.

Accordingly we will assume that all probability spaces are complete.

Without this convention, ([0, 1],L, m) would not be isomorphic to

([0, 1],B, m), where B is the Ã -algebra of Borel sets (that is, the Ã -algebra

generated by the open sets) for the rather uninteresting (though non-trivial)

reason that L has more null sets than B does.

37. Definition. An interval space consists of an interval [0, t] equipped with

Lebesgue measure, where 0 f t f 1, to which are appended countably many

points having a combined positive measure 1 2 t ; with atoms if t < 1, without

atoms if t = 1.10

38. Exercise. Show that an interval space is a complete probability space.

39. Definition. A Lebesgue space is a probability space that is isomorphic to

some interval space. A Lebesgue space is non-atomic if it is isomorphic to

([0, 1],L, m).

40. Remark. A classic reference in the theory of Lebesgue spaces, axiomat-

ically defined, is Rohlin (1952), though this and most of the literature on

axiomatic treatments is fraught with vagueness and ambiguity (if not con-

fusion), due in part to a cavalier attitude toward sets of measure zero. (For

an interesting and well-motivated modern axiomatic treatment, see Rudolph

(1990).) An arguably more sensible theory of spaces measurably isomorphic to

the unit interval is that of regular Borel probability measures on Polish spaces;

however, we are choosing to skirt most of the issues entirely by simply defin-

ing Lebesgue spaces to be those that are isomorphic to an interval space. (Not

all of the issues: see the axiomatic criterion in Theorem 53 below.)

There are tremendous technical advantages to doing analysis on Lebesgue

spaces. Following standard ergodic theory practice, we shall deal almost exclu-

sively with non-atomic Lebesgue spaces in this book. Since, in essence, the

only non-atomic Lebesgue space is the unit interval, one can be deceived into

thinking that this is unduly restrictive. However, the concept is actually quite

general. Indeed, just about every probability space you are likely to encounter

is Lebesgue or at least has a Lebesgue completion; in particular, spaces derived

from completing regular Borel measures on compact metrizable spaces are

Lebesgue; non-Lebesgue spaces are pathological examples, generally deriving

10 So, let » = [0, t] * C , where C is a countable set whose intersection with [0, t] is empty,

let f : C ³ [0, 1 2 t] be a function satisfying
�

c*C f (c) = 1 2 t , let A consist of all

L * D, where L is a Lebesgue measurable subset of [0, t] and D is any subset of C , and for

A = L * D * A, put ¿(A) = m(L) +
�

c*D f (c). (»,A, ¿) is an interval space.
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