Cambridge University Press & Assessment 978-0-521-19420-4 — Modeling Ordered Choices William H. Greene , David A. Hensher Frontmatter <u>More Information</u>

Modeling Ordered Choices

It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made among a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.

William H. Greene is Professor of Economics and Toyota Motor Corp Professor at the Stern School of Business, New York University.

David A. Hensher is Professor of Management and Director of the Institute of Transport and Logistics, University of Sydney.

Cambridge University Press & Assessment 978-0-521-19420-4 — Modeling Ordered Choices William H. Greene , David A. Hensher Frontmatter <u>More Information</u>

Modeling Ordered Choices

A Primer

William H. Greene and David A. Hensher

Cambridge University Press & Assessment 978-0-521-19420-4 — Modeling Ordered Choices William H. Greene , David A. Hensher Frontmatter More Information

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521194204

© William H. Greene and David A. Hensher 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2010

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-19420-4 Hardback ISBN 978-0-521-14237-3 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

1

2

3

Cambridge University Press & Assessment 978-0-521-19420-4 — Modeling Ordered Choices William H. Greene , David A. Hensher Frontmatter <u>More Information</u>

Contents

List o	f tables	page ix	
List o	List of figures		
Prefa	ce	xiii	
Intro	duction: random utility and ordered choice models	1	
Mode	eling binary choices	9	
2.1	Random utility formulation of a model for binary choice	10	
2.2	Probability models for binary choices	11	
2.3	Estimation and inference	16	
2.4	Covariance matrix estimation	26	
2.5	Application of the binary choice model to health satisfaction	28	
2.6	Partial effects in a binary choice model	30	
2.7	Hypothesis testing	39	
2.8	Goodness of fit measures	44	
2.9	Heteroscedasticity	54	
2.10	Panel data	57	
2.11	Parameter heterogeneity	75	
2.12	Endogeneity of a right-hand-side variable	80	
2.13	Bivariate binary choice models	83	
2.14	The multivariate probit and panel probit models	93	
2.15	Endogenous sampling and case control studies	96	
A mo	del for ordered choices	99	
3.1	A latent regression model for a continuous measure	99	
3.2	Ordered choice as an outcome of utility maximization	103	
3.3	An observed discrete outcome	105	
3.4	Probabilities and the log likelihood	108	

vi	Conte	Contents				
	35	Log likelihood function	108			
	3.6	Analysis of data on ordered choices	100			
4	Ante	cedents and contemporary counterparts	111			
	4.1	The origin of probit analysis: Bliss (1934a), Finney (1947a)	111			
	4.2	Social science data and regression analysis for binary outcomes	116			
	4.3	Analysis of binary choice	117			
	4.4	Ordered outcomes: Aitchison and Silvey (1957), Snell (1964)	117			
	4.5	Minimum chi squared estimation of an ordered	100			
	16	Individual data and polychotomous outcomes Wollver	125			
	4.0	and Duncan (1967)	125			
	47	McKelvey and Zavoina (1975)	125			
	4.7	Cumulative odds model	127			
	4.0	Continuation ratio model	127			
	4 10	The ordered regression model	130			
	4.10	Other related models	132			
	4.12	The latent continuous variable	134			
5	Estin	nation, inference and analysis using the ordered choice model	136			
	5.1	Application of the ordered choice model to self-assessed				
		health status	136			
	5.2	Distributional assumptions	138			
	5.3	The estimated ordered probit (logit) model	138			
	5.4	The estimated threshold parameters	140			
	5.5	Interpretation of the model – partial effects and				
		scaled coefficients	142			
	5.6	Inference	150			
	5.7	Prediction – computing probabilities	157			
	5.8	Measuring fit	160			
	5.9	Estimation issues	167			
6	Speci	fication issues and generalized models	181			
	6.1	Functional form issues and the generalized ordered				
		choice model (1)	181			
	6.2	Model implications for partial effects	193			
	6.3	Methodological issues	198			
	6.4	Specification tests for ordered choice models	198			

vii	Contents				
7	Accommodating individual heterogeneity	208			
	7.1 Threshold models – the generalized ordered probit model (2) 209			
	7.2 Nonlinear specifications – a hierarchical ordered	,			
	probit (HOPIT) model	214			
	7.3 Thresholds and heterogeneity – anchoring vignettes	219			
	7.4 Heterogeneous scaling (heteroscedasticity) of random utilit	y 232			
	7.5 Individually heterogeneous marginal utilities	237			
	Appendix: Equivalence of the vignette and HOPIT models	237			
8	Parameter variation and a generalized model	239			
	8.1 Random-parameters models	239			
	8.2 Latent class and finite mixture modeling	247			
	8.3 Generalized ordered choice model with random thresholds	(3) 262			
9	Ordered choice modeling with panel and time series data	268			
	9.1 Ordered choice models with fixed effects	268			
	9.2 Ordered choice models with random effects	275			
	9.3 Testing for random or fixed effects: a variable addition test	278			
	9.4 Extending parameter heterogeneity models to ordered choice	ces 281			
	9.5 Dynamic models	285			
	9.6 Spatial autocorrelation	289			
10	Bivariate and multivariate ordered choice models	290			
	10.1 Multiple equations	290			
	10.2 Bivariate ordered probit models	291			
	10.3 Polychoric correlation	294			
	10.4 Semi-ordered bivariate probit model	295			
	10.5 Applications of the bivariate ordered probit model	295			
	10.6 A panel data version of the bivariate ordered probit model	297			
	10.7 Trivariate and multivariate ordered probit models	299			
11	Two-part and sample selection models	302			
	11.1 Inflation models	302			
	11.2 Sample selection models	306			
	11.3 An ordered probit model with endogenous treatment effect	s 319			
12	Semiparametric and nonparametric estimators and analyses 32				
	12.1 Heteroscedasticity	321			
	12.2 A distribution free estimator with unknown heteroscedastic	city 323			

viii	Contents			
		221		
	12.3 A semi-nonparametric approach	324		
	12.4 A partially linear model	327		
	12.5 Semiparametric analysis	327		
	12.6 A nonparametric duration model	329		
	References	337		
	Index	361		

Cambridge University Press & Assessment 978-0-521-19420-4 — Modeling Ordered Choices William H. Greene, David A. Hensher Frontmatter <u>More Information</u>

Tables

2.1	Data used in binary choice application	page	29
2.2	Estimated probit and logit models		29
2.3	Alternative estimated standard errors for the probit model		30
2.4	Partial effects for probit and logit models at means of x		32
2.5	Marginal effects and average partial effects		37
2.6	Hypothesis tests		43
2.7	Homogeneity test		43
2.8	Fit measures for probit model		49
2.9a	Prediction success for probit model based on $\hat{y}_i = 1[\hat{F}_i > .5]$		50
2.9b	Predictions for probit model based on probabilities		50
2.10	Success measures for predictions by estimated probit model		
	using $\hat{y}_i = 1[\hat{F}_i > .5]$		50
2.11	Heteroscedastic probit model		56
2.12	Cluster corrected covariance matrix (7,293 groups)		59
2.13	Fixed effects probit model		61
2.14	Estimated fixed effects logit models		65
2.15	Estimated random effects probit models		70
2.16a	Semiparametric random effects probit model		70
2.16b	Estimated parameters for four class latent class model		70
2.17	Random effects model with Mundlak correction		74
2.18	Estimated random parameter models		78
2.19	Estimated partial effects		78
2.20	Cross-tabulation of healthy and working		86
2.21	Estimated bivariate probit model		87
2.22	Estimated sample selection model		93
2.23	Estimated panel probit model		95
4.1	McCullagh application of an ordered outcome model]	130
5.1	Estimated ordered choice models: probit and logit]	139
5.2	Estimated partial effects for ordered choice models]	144
5.3	Estimated expanded ordered probit model]	147
5.4	Transformed latent regression coefficients	1	150

List of tables				
5 5	Estimated partial effects with asymptotic standard errors	158		
5.6	Mean predicted probabilities by kids	150		
5.7a	Predicted vs. actual outcomes for ordered probit model	165		
5.7a	Predicted probabilities vs. actual outcomes for ordered	105		
5.70	probit model	165		
5.8	Predicted vs. actual outcomes for automobile data	166		
5.9	Grouped data for ordered choice modeling response			
	frequency in a taste-testing experiment	168		
5.10	Estimated ordered choice model based on grouped data	169		
5.11	Stata and NLOGIT estimates of an ordered probit model	172		
5.12	Software used for ordered choice modeling	179		
6.1	Brant test for parameter homogeneity	186		
6.2	Estimated ordered logit and generalized ordered logit (1)	191		
6.3	Boes and Winkelmann estimated partial effects	194		
7.1	Estimated generalized ordered probit models from			
	Terza (1985)	211		
7.2	Estimated hierarchical ordered probit models	217		
7.3	Estimated partial effects for ordered probit models	218		
7.4	Predicted outcomes from ordered probit models	219		
7.5	Estimated heteroscedastic ordered probit model	235		
7.6	Partial effects in heteroscedastic ordered probit model	236		
8.1	Estimated random parameters ordered probit model	242		
8.2	Implied estimates of parameter matrices	243		
8.3	Estimated partial effects from random-parameters model	244		
8.4	Estimated two-class latent class ordered probit models	256		
8.5	Estimated partial effects from latent class models	257		
8.6	Estimated generalized random-thresholds ordered logit model	266		
9.1	Monte Carlo analysis of the bias of the MLE in fixed-effects			
	discrete choice models (Means of empirical sampling			
	distributions, $n = 1,000$ individuals, $R = 200$ replications)	270		
9.2	Fixed-effects ordered choice models	279		
9.3	Random effects ordered logit models – quadrature and			
	simulation	280		
9.4	Random effects ordered probit model with Mundlak correction	281		
9.5	Random parameters ordered logit model	283		
9.6	Latent-class ordered logit models	284		
10.1	Applications of bivariate ordered probit since 2000	296		
11.1	Estimated ordered probit sample selection model	310		
12.1	Grouping of strike durations	334		
12.2	Estimated logistic duration models for strike duration	334		

Cambridge University Press & Assessment 978-0-521-19420-4 — Modeling Ordered Choices William H. Greene , David A. Hensher Frontmatter <u>More Information</u>

Figures

1.1	IMDb.com ratings (www.imdb.com/title/tt0465234/ratings)	page 3
2.1	Random utility basis for a binary outcome	11
2.2	Probability model for binary choice	14
2.3	Probit model for binary choice	15
2.4	Partial effects in a binary choice model	31
2.5	Fitted probabilities for a probit model	39
2.6	Prediction success for different prediction rules	51
2.7	ROC curve for estimated probit model	54
2.8	Distribution of conditional means of income parameter	80
3.1	Underlying probabilities for an ordered choice model	108
4.1	Insecticide experiment	112
4.2	Table of probits for values of p_i	114
4.3	Percentage errors in Pearson table of probability integrals	114
4.4	Implied spline regression in Bliss's probit model	115
5.1	Self-reported health satisfaction	137
5.2	Health satisfaction with combined categories	137
5.3	Estimated ordered probit model	140
5.4a	Sample proportions	141
5.4b	Implied partitioning of latent normal distribution	141
5.5	Partial effect in ordered probit model	145
5.6	Predicted probabilities for different ages	160
6.1	Estimated partial effects in Boes and Winkelmann (2006b)	
	models	196
6.2	Estimated partial effects for linear and nonlinear	
	index functions	196
7.1	Differential item functioning in ordered choices	220
7.2	KMST comparison of political efficacy	229
7.3	KMST estimated vignette model	230
8.1	Kernel density for estimate of the distribution of means of	
	income coefficient	247

xii	List of	List of figures			
	12.1	Table 1 from Stewart (2005)	325		
	12.2	Job satisfaction application, extended	326		
	12.3	Strike duration data	333		
	12.4	Estimated nonparametric hazard functions	335		
	12.5	Estimated hazard function from log-logistic			
		parametric model	335		

Cambridge University Press & Assessment 978-0-521-19420-4 — Modeling Ordered Choices William H. Greene , David A. Hensher Frontmatter <u>More Information</u>

Preface

This book began as a short note to propose the estimator in Section 8.3. In researching the recent developments in ordered choice modeling, we concluded that it would be useful to include some pedagogical material about uses and interpretation of the model at the most basic level. Our review of the literature revealed an impressive breadth and depth of applications of ordered choice modeling, but no single source that provided a comprehensive summary. There are several somewhat narrow surveys of the basic ordered probit/logit model, including Winship and Mare (1984), Becker and Kennedy (1992), Daykin and Moffatt (2002) and Boes and Winkelmann (2006a), and a book-length treatment, by Johnson and Albert (1999) that is focused on Bayesian estimation of the basic model parameters using grouped data. (See, also, Congdon (2005), Ch. 7 and Agresti (2002), Section 7.4.) However, these stop well short of examining the extensive range of variants of the model and the variety of fields of applications, such as bivariate and multivariate models, two-part models, duration models, panel data models, models with anchoring vignettes, semiparametric approaches, and so on. (We have, of necessity, omitted mention of many – perhaps most – of the huge number of applications.) This motivated us to assemble this more complete overview of the topic. As this review proceeded, it struck us that a more thorough survey of the model itself, including its historical development, might also be useful and (we hope) interesting for readers. The following is also a survey of the methodological literature on modeling ordered outcomes and ordered choices.

The development of the ordered choice regression model has emerged in two surprisingly disjointed strands of literature: in its earliest forms in the bioassay literature, and in its modern social science counterpart with the pioneering paper by McKelvey and Zavoina (1975) and its successors, such as Terza (1985). There are a few prominent links between these two literatures, notably Walker and Duncan (1967). However, even up to the contemporary literature, biological scientists and social scientists have largely successfully avoided bumping into each other. For example, the 500+ entry references

xiv

Cambridge University Press & Assessment 978-0-521-19420-4 — Modeling Ordered Choices William H. Greene , David A. Hensher Frontmatter <u>More Information</u>

Preface

list of this survey shares only four items with its 100+ entry counterpart in Johnson and Albert (1999).

The earliest applications of modeling ordered outcomes involved aggregate (grouped) data assembled in table format, and with moderate numbers of levels of usually a single stimulus. The fundamental ordered logistic ("cumulative odds") model in its various forms serves well as an appropriate modeling framework for such data. Walker and Duncan (1967) focused on a major limitation of the approach. When data are obtained with large numbers of inputs - the models in Brewer et al. (2008), for example, involve over forty covariates - and many levels of those inputs, then cross-tabulations are no longer feasible or adequate. Two requirements become obvious: the use of the individual data and the heavy reliance on what amount to multiple regressionstyle techniques. McKelvey and Zavoina (1975) added to the model a reliance on a formal underlying "data-generating process," the latent regression. This mechanism makes an occasional appearance in the bioassay treatment, but is never absent from the social science application. The cumulative odds model for contingency tables and the fundamental ordered probit model for individual data are now standard tools. The recent advances in ordered choice modeling have involved modeling heterogeneity, in cross-sections and in panel data sets. These include a variety of threshold models and models of parameter variation such as latent class and mixed and hierarchical models. The chapters in this book present, in some detail, the full range of varieties of models for ordered choices.

This book is intended to be a survey of a particular class of discrete choice models. We anticipate that it can be used in a graduate level course in applied econometrics or statistics at the level of, say, Greene (2008a) or Wooldridge (2002b) and as a reference in specialized courses such as microeconometrics or discrete choice modeling. We assume that the reader is familiar with basic statistics and econometrics and with modeling techniques somewhat beyond the linear regression model. An introduction to maximum likelihood estimation and the most familiar binary choice models, probit and logit, is assumed, though developed in great detail in Chapter 2. The focus of this book is on areas of application of ordered choice models. The range of applications considered here includes economics, sociology, health economics, finance, political science, statistics in medicine, transportation planning, and many others. We have drawn on all of these in our collection of applications. We leave it to others, e.g., Hayashi (2000), Wooldridge (2002a), or Greene (2008a) to provide background material on, e.g., asymptotic theory for estimators and practical aspects of nonlinear optimization.

xv

Cambridge University Press & Assessment 978-0-521-19420-4 — Modeling Ordered Choices William H. Greene , David A. Hensher Frontmatter <u>More Information</u>

Preface

All of the computations carried out here were done with *NLOGIT* (see www.nlogit.com). Most of them can also be done with several other packages, such as *Stata* and SAS. Since this book is not a "how to" guide for any particular computer program, we have not provided any instructions on how to obtain the results with *NLOGIT* (or any other program). We assume that the interested reader can follow through on our developments with their favorite software, whatever that might be. Rather, our interest is in the models and techniques.

We would like to thank Joseph Hilbe and Chandra Bhat for their suggestions that have improved this work and Allison Greene for her assistance with the manuscript. Any errors that remain are ours.