
Introduction

Two developments in the late 1960s and early 1970s set the stage for supergravity. First
the standard model took shape and was decisively confirmed by experiments. The key
theoretical concept underlying this progress was gauge symmetry, the idea that symme-
try transformations act independently at each point of spacetime. In the standard model
these are internal symmetries, whose parameters are Lorentz scalars θ A(x) that are arbi-
trary functions of the spacetime point x . These parameters are coordinates of the com-
pact Lie group SU(3) ⊗ SU(2) ⊗ U(1). Scalar, spinor, and vector fields of the theory
are each classified in representations of this group, and the Lagrangian is invariant under
group transformations. The special dynamics associated with the non-abelian gauge princi-
ple allows different realizations of the symmetry in the particle spectrum and interactions
that would be observed in experiments. For example, part of the gauge symmetry may
be ‘spontaneously broken’. In the standard model this produces the ‘unification’ of weak
and electromagnetic interactions. The observed strength and range of these forces are very
different, yet the gauge symmetry gives them a common origin.

The other development was global (also called rigid) supersymmetry [1, 2, 3]. It is the
unique framework that allows fields and particles of different spin to be unified in rep-
resentations of an algebraic system called a superalgebra. The symmetry parameters are
spinors εα that are constant, independent of x . The simplest N = 1 superalgebra contains
a spinor supercharge Qα and the energy–momentum operator Pa . The anti-commutator of
two supercharges is a translation in spacetime. The N = 1 supersymmetry algebra has
representations containing massless particles of spins (s, s − 1/2) for s = 1/2, 1, . . . and
somewhat larger representations containing particles with a common non-vanishing mass.
Thus supersymmetry always unites bosons, integer spin, with fermions, half-integer spin.
The focus of early work was interacting field theories of the (1/2, 0) and (1, 1/2) mul-
tiplets. It was found that the ultraviolet divergences of supersymmetric theories are less
severe than in the standard model due to the cancelation between bosons and fermions in
loop diagrams.

Unbroken supersymmetry requires a spectrum of particles in equal-mass boson–fermion
pairs. This is decidedly not what is observed in experiments. So if supersymmetry is real-
ized in Nature, it must appear as a broken symmetry. Through the years much theoretical
effort has been devoted to the construction of extensions of the standard model with broken
supersymmetry. It is hypothesized that the as yet unseen superpartners of the known par-
ticles will be produced at the Large Hadron Collider (LHC) accelerator, thus confirming a
supersymmetric version of the standard model. The advantages of supersymmetric models
include the following:
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2 Introduction

• Milder ultraviolet divergences permit an improved and more predictive treatment of elec-
troweak symmetry breaking.

• When extrapolated using the renormalization group, the three distinct gauge couplings
of the standard model approach a common value at high energy. The unification of cou-
plings is a major success.

• Supersymmetry provides natural candidates for the particles of cosmological cold dark
matter.

The role of gauge symmetry in the standard model suggested that a gauged form of
supersymmetry would be interesting and perhaps more powerful than the global form. Such
a theory would contain gauge fields for both spacetime translations Pa and SUSY transfor-
mations generated by Qα . Thus gauged supersymmetry was expected to be an extension
of general relativity in which the graviton acquires a fermionic partner called the gravitino.
The name supergravity is certainly appropriate and was used even before the theory was
actually found. It was reasonable to think that the gauge fields of the theory would be the
vierbein, ea

μ(x), needed to describe gravity coupled to fermions, and a vector–spinor field,
ψμα(x), for the gravitino. The graviton and gravitino belong to the (2, 3/2) representa-
tion of the algebra. A Lagrangian field theory of supergravity was formulated in the spring
of 1976 in [4]. The approach taken was to modify the known free field Lagrangian for
ψμα to agree with gravitational gauge symmetry and then find, by a systematic procedure,
the additional terms necessary for invariance under supersymmetry transformations with
arbitrary εα(x). Soon an alternative approach appeared [5] in which the most complicated
calculation required in [4] is avoided.

Research in supergravity became a very intense activity in the years following its dis-
covery. One early direction was the construction of Lagrangian field theories in which the
spin-(2, 3/2) gravity multiplet is coupled to the (1/2, 0) and (1, 1/2) multiplets of global
supersymmetry. This is the framework of matter-coupled supergravity. It shares the posi-
tive features of global symmetry listed above. In addition supergravity provides new sce-
narios for the breaking of supersymmetry. In particular, the structure of the supergravity
Lagrangians allows SUSY breaking with vanishing vacuum energy and thus vanishing
cosmological constant. This feature is not available without the coupling of matter fields
to supergravity. Matter-coupled supergravity theories typically contain scalar fields, which
can be useful in constructing phenomenological models of inflationary cosmology.

A spin-3/2 particle is the key prediction of supergravity. SUSY breaking gives it a mass
whose magnitude depends on the breaking mechanism. Unfortunately it appears difficult
to detect it at the LHC because it is coupled to matter with the feeble strength of quan-
tum gravity. However, gravitinos can be copiously produced in the ultra-high-temperature
environment at or near the big bang. Gravitino production leads to important constraints
on early universe cosmology.

A second direction of research involves the construction of theories with several super-
charges Qiα , i = 1, 2, . . . ,N . Such extended supergravity theories can be constructed up
to the limit N = 8 in spacetime dimension D = 4. Beyond that the superalgebra represen-
tations necessarily contain particles of spin s ≥ 5/2, for which no consistent interactions
exist. Many of the ultraviolet divergences expected in a field theory containing gravity are
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Introduction 3

known to cancel in the maximal N = 8 theory, and some theorists speculate that it is
ultraviolet finite to all orders in perturbation theory.

Supergravity theories in spacetime dimensions D > 4 have been constructed up to
the bound D = 11 (which is again due to the higher spin consistency problem). Two
10-dimensional supergravity theories, known as the Type IIA and Type IIB theories, are
related to the superstring theories that carry the same names. Roughly speaking, supergrav-
ity appears as the low-energy limit of superstring theory. This means that the dynamics of
the lowest-energy modes of the superstring are described by supergravity. But these state-
ments do not do justice to the intimate and rich relation of these two theoretical frame-
works.

The very important anti-de Sitter/conformal field theory (AdS/CFT) correspondence
provides one example of this relation. It was based on the remarkable conjecture that Type
IIB string theory on the product manifold AdS5 ⊗ S5 is equivalent to the maximal N = 4
global supersymmetric gauge theory. However, concrete tests and predictions of AdS/CFT
usually involve working in the limit in which classical supergravity is a valid approxima-
tion to string theory.

The scope of supergravity is broad. There is a supergravity-inspired approach to posi-
tive energy and stability in gravitational theories. Many classical solutions of supergravity
have the special Bogomol’nyi–Prasad–Sommerfield (BPS) property and therefore satisfy
tractable first order field equations. The scalar sectors of supergravity theories involve non-
linear σ -models on complex manifolds with new geometries of interest in both physics and
mathematics.

To summarize: supergravity is based on the gauge principle of local supersymmetry and
is thus connected to fundamental ideas in theoretical physics. Supergravity effects may turn
out to be observable at the LHC. Further there is important input from cosmology. This
real side of the subject is far from confirmation, but it must be taken seriously. In addition
there are several more theoretical applications such as BPS solutions and AdS/CFT. Active
research continues on most branches of supergravity although 35 years have passed since
it was first formulated.
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PART I

RELATIVISTIC FIELD THEORY IN
MINKOWSKI SPACETIME
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Scalar field theory and its symmetries 1

The major purpose of the early chapters of this book is to review the basic notions of rel-
ativistic field theory that underlie our treatment of supergravity. In this chapter we discuss
the implementation of internal and spacetime symmetries using the model of a system of
free scalar fields as an example. The general Noether formalism for symmetries is also dis-
cussed. Our book largely involves classical field theory. However, we adopt conventions
for symmetries that are compatible with implementation at the quantum level.

Our treatment is not designed to teach the material to readers who are encountering
it for the first time. Rather we try to gather the ideas (and the formulas!) that are useful
background for later chapters. Supersymmetry and supergravity are based on symmetries
such as the spacetime symmetry of the Poincaré group and much more!

As in much of this book, we assume general spacetime dimension D, with special
emphasis on the case D = 4.

1.1 The scalar field system

We consider a system of n real scalar fields φi (x), i = 1, . . . , n, that propagate in a flat
spacetime whose metric tensor

ημν = ημν = diag(−,+, . . . ,+) (1.1)

describes one time and D − 1 space dimensions. This is Minkowski spacetime, in which
we use Cartesian coordinates xμ, μ = 0, 1, . . . , D − 1, with time coordinate x0 = t (with
velocity of light c = 1).

Practicing physicists and mathematicians are largely concerned with fields that satisfy
nonlinear equations. However, linear wave equations, which describe free relativistic par-
ticles, have much to teach about the basic ideas. We therefore assume that our fields satisfy
the Klein–Gordon equation

φi (x) = m2φi (x) , (1.2)

where = ημν∂μ∂ν is the Lorentz invariant d’Alembertian wave operator.
7
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8 Scalar field theory and its symmetries

The equation has plane wave solutions e±i( 	p·	x−Et), which provide the wave functions
for particles of spatial momentum 	p, with spatial components pi , and energy E = p0 =√ 	p2 + m2. The general solution of the equation is the sum of a positive frequency part,
which can be expressed as the (D − 1)-dimensional Fourier transform in the plane waves
ei( 	p·	x−Et), plus a negative frequency part, which is the Fourier transform in the e−i( 	p·	x−Et),

φi (x) = φi+(x) + φi−(x) ,

φi+(x) =
∫

dD−1 	p
(2π)(D−1)2E

ei( 	p·	x−Et)ai ( 	p) ,

φi−(x) =
∫

dD−1 	p
(2π)(D−1)2E

e−i( 	p·	x−Et)ai∗( 	p). (1.3)

In the classical theory the quantities ai ( 	p), ai∗( 	p) are simply complex valued functions of
the spatial momentum 	p. After quantization one arrives at the true quantum field theory1

in which ai ( 	p), ai∗( 	p) are annihilation and creation operators2 for the particles described
by the field operator φi (	x).

The Klein–Gordon equation (1.2) is the variational derivative δS/δφi (x) of the action

S =
∫

dDx L(x) = − 1
2

∫
dDx

[
ημν∂μφ

i∂νφ
i + m2φiφi

]
. (1.4)

The repeated index i is summed. The action is a functional of the fields φi (x). It is a real
number that depends on the configuration of the fields throughout spacetime.

1.2 Symmetries of the system

Consider a set of fields such as the φi (x) that satisfy equations of motion such as (1.2). A
general symmetry of the system is a mapping of the configuration space, φi (x)→ φ′i (x),
with the property that if the original field configuration φi (x) is a solution of the equations
of motion, then the transformed configuration φ′i (x) is also a solution. For scalar fields
and for most other systems of interest in this book, we can restrict attention to symmetry
transformations that leave the action invariant. Thus we require that the mapping has the
property3,4

S[φi ] = S[φ′i ]. (1.5)

Here is an example.

1 When desirable for clarity we use bold face to indicate the operator in the quantum theory that corresponds to
a given classical quantity.

2 In the conventions above, creation and annihilation operators are normalized in the quantum theory by
[a( 	p), a∗( 	p′)] = (2π)D−12E δ( 	p − 	p′).

3 Such mappings must also respect the boundary conditions. This requirement can be non-trivial, e.g. Neumann
and Dirichlet boundary conditions for the bosonic string lead to different spacetime symmetry groups. We will
mostly assume that field configurations vanish at large spacetime distances.

4 One important exception is the electromagnetic duality symmetry, which is discussed in Sec. 4.2.
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1.2 Symmetries of the system 9

Exercise 1.1 Verify that the map φi (x) → φ′i (x) = φi (x + a) satisfies (1.5) if aμ is a
constant vector. This symmetry is called a global spacetime translation.

We consider both spacetime symmetries, which involve a motion in Minkowski space-
time such as the global translation of the exercise, and internal symmetries, which do not.
Internal symmetries are simpler to describe, so we start with them.

1.2.1 SO(n) internal symmetry

Let Ri
j be a matrix of the orthogonal group SO(n). This means that it is an n × n matrix

that satisfies

Ri
kδi j R j

� = δk� , det R = 1. (1.6)

It is quite obvious that the linear map,

φi (x)→ φ′i (x) = Ri
jφ

j (x) , (1.7)

satisfies (1.5) and is an internal symmetry of the action (1.4). This symmetry is called
a continuous symmetry because a matrix of SO(n) depends continuously on 1

2 n(n − 1)
independent group parameters. We will discuss one useful choice of parameters shortly.
We also call the symmetry a global symmetry because the parameters are constants. In Ch.
4 we will consider local or gauged internal symmetries in which the group parameters are
arbitrary functions of xμ.

It is worth stating the intuitive picture of this symmetry. One may consider the field φi

as an n-dimensional vector, that is an element of Rn . The transformation φi → Ri
jφ

j is a
rotation in this internal space. Such a rotation preserves the usual norm φiδi jφ

j .

We now introduce the Lie algebra of the group SO(n). To first order in the small
parameter ε, we write the infinitesimal transformation

Ri
j = δi

j − εr i
j . (1.8)

This satisfies (1.6) if r i
j = −r j

i . Any antisymmetric matrix r i
j is called a generator of

SO(n). The Lie algebra is the linear space spanned by the 1
2 n(n − 1) independent genera-

tors, with the commutator product

[r, r ′] = r r ′ − r ′r. (1.9)

Note that matrices are multiplied5 as r i
kr ′k j .

A useful basis for the Lie algebra is to choose generators that act in each of the 1
2 n(n−1)

independent 2-planes of Rn . For the 2-plane in the directions î ĵ this generator is given by

r[î ĵ]
i

j ≡ δi
î
δ ĵ j − δi

ĵ
δî j = −r[ ĵ î]

i
j . (1.10)

5 Some mathematical readers may initially be perturbed by the indices used to express many equations in this
book. We will follow the standard conventions used in physics. Unless ambiguity arises we use the Einstein
summation convention for repeated indices, usually one downstairs and one upstairs. The summation conven-
tion incorporates the standard rules of matrix multiplication.
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10 Scalar field theory and its symmetries

Note the distinction between the coordinate plane labels in brackets with hatted indices and
the row and column indices. The commutators of the generators defined in (1.10) are

[r[î ĵ], r[k̂l̂]] = δ ĵ k̂r[î l̂] − δî k̂r[ ĵ l̂] − δ ĵ l̂ r[î k̂] + δî l̂ r[ ĵ k̂]. (1.11)

The row and column indices are suppressed in this equation, and this will be our practice
when it causes no ambiguity. The equation implicitly specifies the structure constants of
the Lie algebra in the basis of (1.10).

In this basis, a finite transformation of SO(n) is determined by a set of 1
2 n(n − 1) real

parameters θ î ĵ which specify the angles of rotation in the independent 2-planes. A general
element of (the connected component) of the group can be written as an exponential

R = e−
1
2 θ

î ĵ r[î ĵ] . (1.12)

1.2.2 General internal symmetry

It will be useful to establish the notation for the general situation of linearly realized inter-
nal symmetry under an arbitrary connected Lie group G, usually a compact group, of
dimension dim G. We will be interested in an n-dimensional representation of G in which
the generators of its Lie algebra are a set of n × n matrices (tA)

i
j , A = 1, 2, . . . , dim G.

Their commutation relations are6

[tA, tB] = f AB
C tC , (1.13)

and the f AB
C are structure constants of the Lie algebra. The representative of a general

element of the Lie algebra is a matrix � that is a superposition of the generators with real
parameters θ A, i.e.

� = θ AtA. (1.14)

An element of the group is represented by the matrix exponential

U (�) = e−� = e−θ AtA . (1.15)

We consider a set of scalar fields φi (x) which transforms in the representation just
described. The fields may be real or complex. If complex, the complex conjugate of every
element is also included in the set. A group transformation acts by matrix multiplication
on the fields:

φi (x)→ φ′i (x) ≡ U (�)i jφ
j (x). (1.16)

6 Although it is common in the physics literature to insert the imaginary i in the commutation rule, we do not
do this in order to eliminate ‘i’s in most of the formulas of the book. This means that compact generators tA
in this book are anti-hermitian matrices.
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