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Vectors

1.1 Definitions (basic)

There are many ways to define a vector. For starters, here’s the most basic:

A vector is the mathematical representation of a physical entity that may be
characterized by size (or “magnitude”) and direction.

In keeping with this definition, speed (how fast an object is going) is not rep-
resented by a vector, but velocity (how fast and in which direction an object is
going) does qualify as a vector quantity. Another example of a vector quantity
is force, which describes how strongly and in what direction something is being
pushed or pulled. But temperature, which has magnitude but no direction, is not
a vector quantity.

The word “vector” comes from the Latin vehere meaning “to carry;” it was
first used by eighteenth-century astronomers investigating the mechanism by
which a planet is “carried” around the Sun.1 In text, the vector nature of an
object is often indicated by placing a small arrow over the variable representing
the object (such as �F), or by using a bold font (such as F), or by underlining
(such as F or F∼). When you begin hand-writing equations involving vectors,

it’s very important that you get into the habit of denoting vectors using one of
these techniques (or another one of your choosing). The important thing is not
how you denote vectors, it’s that you don’t simply write them the same way
you write non-vector quantities.

A vector is most commonly depicted graphically as a directed line seg-
ment or an arrow, as shown in Figure 1.1(a). And as you’ll see later in this
section, a vector may also be represented by an ordered set of N numbers,

1 The Oxford English Dictionary. 2nd ed. 1989.
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2 Vectors

(b)(a)

Figure 1.1 Graphical depiction of a vector (a) and a vector field (b).

where N is the number of dimensions in the space in which the vector
resides.

Of course, the true value of a vector comes from knowing what it represents.
The vector in Figure 1.1(a), for example, may represent the velocity of the wind
at some location, the acceleration of a rocket, the force on a football, or any of
the thousands of vector quantities that you encounter in the world every day.
Whatever else you may learn about vectors, you can be sure that every one of
them has two things: size and direction. The magnitude of a vector is usually
indicated by the length of the arrow, and it tells you the amount of the quantity
represented by the vector. The scale is up to you (or whoever’s drawing the
vector), but once the scale has been established, all other vectors should be
drawn to the same scale. Once you know that scale, you can determine the
magnitude of any vector just by finding its length. The direction of the vector
is usually given by indicating the angle between the arrow and one or more
specified directions (usually the “coordinate axes”), and it tells you which way
the vector is pointing.

So if vectors are characterized by their magnitude and direction, does that
mean that two equally long vectors pointing in the same direction could in fact
be considered to be the same vector? In other words, if you were to move the
vector shown in Figure 1.1(a) to a different location without varying its length
or its pointing direction, would it still be the same vector? In some applications,
the answer is “yes,” and those vectors are called free vectors. You can move
a free vector anywhere you’d like as long as you don’t change its length or
direction, and it remains the same vector. But in many physics and engineering
problems, you’ll be dealing with vectors that apply at a given location; such
vectors are called “bound” or “anchored” vectors, and you’re not allowed to
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1.1 Definitions (basic) 3

relocate bound vectors as you can free vectors.2 You may see the term “sliding”
vectors used for vectors that are free to move along their length but are not free
to change length or direction; such vectors are useful for problems involving
torque and angular motion.

You can understand the usefulness of bound vectors if you think about an
application such as representing the velocity of the wind at various points in
the atmosphere. To do that, you could choose to draw a bound vector at each
point of interest, and each of those vectors would show the speed and direction
of the wind at that location (most people draw the vector with its tail – the end
without the arrow – at the point to which the vector is bound). A collection of
such vectors is called a vector field; an example is shown in Figure 1.1(b).

If you think about the ways in which you might represent a bound vector,
you may realize that the vector can be defined simply by specifying the start
and end points of the arrow. So in a three-dimensional Cartesian coordinate
system, you only need to know the values of x , y, and z for each end of the
vector, as shown in Figure 1.2(a) (you can read about vector representation in
non-Cartesian coordinate systems later in this chapter).

Now consider the special case in which the vector is anchored to the origin
of the coordinate system (that is, the end without the arrowhead is at the point
of intersection of the coordinate axes, as shown in Figure 1.2(b).3 Such vectors
may be completely specified simply by listing the three numbers that represent
the x-, y-, and z-coordinates of the vector’s end point. Hence a vector anchored
to the origin and stretching five units along the x-axis may be represented as

(a) (b)

(0, 0, 0)

x

y

z (xend – xstart,
yend – ystart,
zend – zstart)

(xend, yend, zend)

(xstart, ystart, zstart)
x

y

z

Figure 1.2 A vector in 3-D Cartesian coordinates.

2 Mathematicians don’t have much use for bound vectors, since the mathematical definition of a
vector deals with how it transforms rather than where it’s located.

3 The vector shown in Figure 1.2 (a) can be shifted to this location by subtracting xstart , ystart ,
and zstart from the values at each end.
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4 Vectors

(5,0,0). In this representation, the values that represent the vector are called the
“components” of the vector, and the number of components it takes to define
a vector is equal to the number of dimensions in the space in which the vector
exists. So in a two-dimensional space a vector may be represented by a pair
of numbers, and in four-dimensional spacetime vectors may appear as lists of
four numbers. This explains why a horizontal list of numbers is called a “row
vector” and a vertical list of numbers is called a “column vector” in computer
science. The number of values in such vectors tells you how many dimensions
there are in the space in which the vector resides.

To understand how vectors are different from other entities, it may help to
consider the nature of some things that are clearly not vectors. Think about the
temperature in the room in which you’re sitting – at each point in the room,
the temperature has a value, which you can represent by a single number. That
value may well be different from the value at other locations, but at any given
point the temperature can be represented by a single number, the magnitude.
Such magnitude-only quantities have been called “scalars” ever since W.R.
Hamilton referred to them as “all values contained on the one scale of progres-
sion of numbers from negative to positive infinity.”4 Thus

A scalar is the mathematical representation of a physical entity that may be
characterized by magnitude only.

Other examples of scalar quantities include mass, charge, energy, and speed
(defined as the magnitude of the velocity vector). It is worth noting that the
change in temperature over a region of space does have both magnitude and
direction and may therefore be represented by a vector, so it’s possible to pro-
duce vectors from groups of scalars. You can read about just such a vector
(called the “gradient” of a scalar field) in Chapter 2.

Since scalars can be represented by magnitude only (single numbers)
and vectors by magnitude and direction (three numbers in three-dimensional
space), you might suspect that there are other entities involving magnitude and
directions that are more complex than vectors (that is, requiring more numbers
than the number of spatial dimensions). Indeed there are, and such entities are
called “tensors.”5 You can read about tensors in the last three chapters of this
book, but for now this simple definition will suffice:

4 W.R. Hamilton, Phil. Mag. XXIX, 26.
5 As you can learn in the later portions of this book, scalars and vectors also belong to the class

of objects called tensors but have lower rank, so in this section the word “tensors” refers to
higher-rank tensors.
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1.2 Cartesian unit vectors 5

A tensor is the mathematical representation of a physical entity that may be
characterized by magnitude and multiple directions.

An example of a tensor is the inertia that relates the angular velocity of a
rotating object to its angular momentum. Since the angular velocity vector
has a direction and the angular momentum vector has a (potentially different)
direction, the inertia tensor involves multiple directions.

And just as a scalar may be represented by a single number and a vector may
be represented by a sequence of three numbers in 3-dimensional space, a tensor
may be represented by an array of 3R numbers in 3-dimensional space. In this
expression, “R” represents the rank of the tensor. So in 3-dimensional space, a
second-rank tensor is represented by 32 = 9 numbers. In N-dimensional space,
scalars still require only one number, vectors require N numbers, and tensors
require NR numbers.

Recognizing scalars, vectors, and tensors is easy once you realize that a
scalar can be represented by a single number, a vector by an ordered set of
numbers, and a tensor by an array of numbers. So in three-dimensional space,
they look like this:

Scalar Vector Tensor (Rank 2)

(x) (x1, x2, x3) or

⎛
⎝x1

x2

x3

⎞
⎠

⎛
⎝ x11 x12 x13

x21 x22 x23

x31 x32 x33

⎞
⎠

Note that scalars require no subscripts, vectors require a single subscript,
and tensors require two or more subscripts – the tensor shown here is a tensor
of rank 2, but you may also encounter higher-rank tensors, as discussed in
Chapter 5. A tensor of rank 3 may be represented by a three-dimensional array
of values.

With these basic definitions in hand, you’re ready to begin considering the
ways in which vectors can be put to use. Among the most useful of all vectors
are the Cartesian unit vectors, which you can read about in the next section.

1.2 Cartesian unit vectors

If you hope to use vectors to solve problems, it’s essential that you learn how to
handle situations involving more than one vector. The first step in that process
is to understand the meaning of special vectors called “unit vectors” that often
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6 Vectors
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Figure 1.3 Unit vectors in 3-D Cartesian coordinates.

serve as markers for various directions of interest (unit vectors may also be
called “versors”).

The first unit vectors you’re likely to encounter are the unit vectors x̂ , ŷ, ẑ
(also called ı̂ , ĵ , k̂) that point in the direction of the x-, y-, and z-axes of the
three-dimensional Cartesian coordinate system, as shown in Figure 1.3. These
vectors are called unit vectors because their length (or magnitude) is always
exactly equal to unity, which is another name for “one.” One what? One of
whatever units you’re using for that axis.

You should note that the Cartesian unit vectors ı̂ , ĵ , k̂ can be drawn at any
location, not just at the origin of the coordinate system. This is illustrated in
Figure 1.4. As long as you draw a vector of unit length pointing in the same
direction as the direction of the (increasing) x-axis, you’ve drawn the ı̂ unit
vector. So the Cartesian unit vectors show you the directions of the x , y, and z
axes, not the location of the origin.

As you’ll see in Chapter 2, unit vectors can be extremely helpful when doing
certain operations such as specifying the portion of a given vector pointing in
a certain direction. That’s because unit vectors don’t have their own magnitude
to throw into the mix (actually, they do have their own magnitude, but it is
always one).

So when you see an expression such as “5ı̂ ,” you should think “5 units along
the positive x-direction.” Likewise, −3ĵ refers to 3 units along the negative
y-direction, and k̂ indicates one unit along the positive z-direction.

Of course, there are other coordinate systems in addition to the three perpen-
dicular axes of the Cartesian system, and unit vectors exist in those coordinate
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1.3 Vector components 7
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Figure 1.4 Cartesian unit vectors at an arbitrary point.

systems as well; you can see some examples in Section 1.5. One advantage
of the Cartesian unit vectors is that they point in the same direction no matter
where you go; the x-, y-, and z-axes run in straight lines all the way out to
infinity, and the Cartesian unit vectors are parallel to the directions of those
lines everywhere.

To put unit vectors such as ı̂ , ĵ , k̂ to work, you need to understand the
concept of vector components. The next section shows you how to represent
vectors using unit vectors and vector components.

1.3 Vector components

The unit vectors described in the previous section are especially useful when
they become part of the “components” of a vector. And what are the compo-
nents of a vector? Simply stated, they are the pieces that can be used to make
up the vector.

To understand vector components, think about the vector �A shown in
Figure 1.5. This is a bound vector, anchored at the origin and extending to
the point (x = 0, y = 3, z = 3) in a three-dimensional Cartesian coordinate
system. So if you consider the coordinate axes as representing the corner of a
room, this vector is embedded in the back wall (the yz plane).

Imagine you’re trying to get from the beginning of vector �A to the end – the
direct route would be simply to move in the direction of the vector. But if you
were constrained to move only in the directions of the axes, you could get from
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8 Vectors

(a) (b)

A

x

y

z
(0, 3, 3)

A

x

y

z
(0, 3, 3)

z-component (Az k)

y-component (Ay j)

Figure 1.5 Vector �A and its components.

the origin to your destination by taking three (unit) steps along the y-axis, then
turning 90◦ to your left, and then taking three more (unit) steps in the direction
of the z-axis.

What does this little journey have to do with the components of a vector?
Simply this: the lengths of the components of vector �A are the distances you
traveled in the directions of the axes. Specifically, in this case the magnitude of
the y-component of vector �A (written as Ay) is just the distance you traveled
in the direction of the y-axis (3 units), and the magnitude of the z-component
of vector �A (written as Az) is the distance you traveled in the direction of the
z-axis (also 3 units). Since you didn’t move at all in the direction of the x-axis,
the magnitude of the x-component of vector �A (written as Ax ) is zero.

A very handy and compact way of writing a vector as a combination of
vector components is this:

�A = Ax ı̂ + Ay ĵ + Azk̂, (1.1)

where the magnitudes of the vector components (Ax , Ay , and Az) tell you how
many unit steps to take in each direction (ı̂ ,ĵ , and k̂) to get from the beginning
to the end of vector �A.6

When you read about vectors and vector components, you’re likely to run
across statements such as “The components of a vector are the projections of
the vector onto the coordinate axes.” As you can see in Chapter 4, exactly
how those projections are made can have a significant influence on the nature
of the components you get. But in Cartesian coordinate systems (and other

6 Some authors refer to the magnitudes Ax , Ay , and Az as the “components of �A,” while others

consider the components to be Ax ı̂ , Ay ĵ , and Azk̂. Just remember that Ax , Ay , and Az are

scalars, but Ax ı̂ , Ay ĵ , and Azk̂ are vectors.
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1.3 Vector components 9

Light rays
perpendicular
to x-axis

Shadow cast
by vector A 
on y-axis

Light rays
perpendicular
to y-axis

(b)(a)

Shadow cast
by vector A
on x-axis

xθ

y

x

y

A

A

Figure 1.6 Vector components as projections onto x- and y-axes.

“orthogonal” systems in which the axes are perpendicular to one another), the
concept of projection onto the coordinate axes is unambiguous and may be
very helpful in picturing the components of a vector.

To understand how this works, take a look at vector �A and the light sources
and shadows in Figure 1.6. As you can see in Figure 1.6(a), the direction of the
light that produces the shadow on the x-axis is parallel to the y-axis (actually
antiparallel since it’s moving in the negative y-direction), which in this case is
the same as saying that the direction of the light is perpendicular to the x-axis.

Likewise, in Figure 1.6(b), the direction of the light that produces the
shadow on the y-axis is antiparallel to the x-axis, which is of course perpendic-
ular to the y-axis. This may seem like a trivial point, but when you encounter
non-orthogonal coordinate systems, you’ll find that the direction parallel to
one axis is not necessarily perpendicular to another axis, which gives rise to
an entirely different type of vector component. This simple fact has profound
implications for the behavior of vectors and tensors for observers in different
reference frames, as you’ll see in Chapters 4, 5, and 6.

No such issues arise in the two-dimensional Cartesian coordinate system
shown in Figure 1.6, and in this case the magnitudes of the components of
vector �A are easy to determine. If the angle between vector �A and the positive
x-axis is θ , as shown in Figure 1.6a, it’s clear that the length of �A can be seen
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10 Vectors

as the hypotenuse of a right triangle. The sides of that triangle along the x- and
y-axes are the components Ax and Ay . Hence by simple trigonometry you can
write:

Ax = | �A| cos(θ),

Ay = | �A| sin(θ),
(1.2)

where the vertical bars on each side of �A signify the magnitude (length)
of vector �A. Notice that so long as you measure the angle θ from the
positive x-axis in the direction toward the positive y-axis (that is, counter-
clockwise in this case), these equations will give the correct sign for the x- and
y-components no matter which quadrant the vector occupies.

For example, if vector �A is a vector with a length of 7 meters pointing in a
direction 210◦ counter-clockwise from the +x-axis, the x- and y-components
are given by Eq. 1.2 as

Ax = | �A| cos(θ) = 7m cos 210◦ = −6.1 m,

Ay = | �A| sin(θ) = 7m sin 210◦ = −3.5 m.
(1.3)

As expected for a vector pointing down and to the left from the origin, both
components are negative.

It’s equally straightforward to find the length and direction of a vector if
you’re given the vector’s Cartesian components. Since the vector forms the
hypotenuse of a right triangle with sides Ax and Ay , the Pythagorean theorem
tells you that the length of �A must be

| �A| =
√

A2
x + A2

y, (1.4)

and from trigonometry

θ = arctan

(
Ay

Ax

)
, (1.5)

where θ is measured counter-clockwise from the positive x-axis in a right-
handed coordinate system. If you try this with the components of vector �A
from Eq. 1.3 and end up with a direction of 30◦ rather than 210◦, remember
that unless you have a four-quadrant arctan function on your calculator, you
must add 180◦ to the angle whenever the denominator of the expression (Ax in
this case) is negative.

Once you have a working understanding of unit vectors and vector compo-
nents, you’re ready to do basic vector operations. The entirety of Chapter 2 is
devoted to such operations, but two of them are needed for the remainder of this
chapter. For that reason, you can read about vector addition and multiplication
by a scalar in the next section.
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