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Overview: Main Themes. Key Issues.

Reader’s Guide

In this overview we wish to place the body of work described in this book in

perspective, connecting it with subject matters in other works sharing similar

goals but pursued in different ways or operating at different levels of inquiry.

There are many such subjects, but two groups stand out as quite obvious or

timely. The obvious subject is quantum gravity (QG) (see, e.g., [1, 2, 3, 4, 5]

and [6, 7, 8] for a sampling of the different schools of thought), pursued in

the last seventy years, while the timely one is gravitational quantum physics

(GQP) (e.g., [9]) a recently minted term presenting a new emphasis on two old

disciplines. Quantum gravity refers to theories of the microscopic structures of

spacetime, where micro refers to the Planck scale 10−33 cm or below, energy

scale of 1019 GeV or above. Familiar representatives are string theory [10, 11],

canonical loop quantum gravity [12, 13, 14, 15, 16, 17], spin network [18, 19, 20],

group field theory [19, 21], asymptotic safety [5, 22, 23, 24, 25, 26], simplicies

[27, 28, 29, 30, 31], causal dynamical triangulation [32, 33, 34], causal sets [35,

36, 37], etc. We shall comment in the last chapter of this book on how stochastic

gravity is linked to quantum gravity, and how it can assist in unraveling the

microscopic structures of spacetime.

These nonperturbative theories operative at the Planck scale are what quan-

tum gravity entails. Their structures and contents are fundamentally different

from perturbative quantum gravity [38, 39] built upon the quantized weak per-

turbations of classical background spacetimes – the spin-two gravitons, which

should exist in nature and are in principle detectable [40, 41] by laboratory

experiments at energies much lower than the Planck energy. First explored

in the early 1960s [42] in the realm of particle physics [43], graviton physics

shares many similar features with photon physics in quantum electrodynamics

(QED) and stands on the same footing as the physics of intermediate bosons

such as gluons in quantum chromodynamics (QCD) of strong interaction. It

is the latter, perturbative quantum gravity, centered on graviton interactions,
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which falls in the realm of gravitational quantum physics. Therefore, it deals

with gravitational effects on quantum systems readily accessible at today’s low

energy in experiments on Earth or in space. In Sec. 1.3 we shall describe the

relation of semiclassical gravity with gravitational quantum physics, point out

the non-relation with the Newton–Schrödinger equation [44], and mention the

role of stochastic gravity in addressing quantum information issues.

In this section we discuss two key issues, (1) self-consistent backreaction and

non-Markovian dynamics; (2) coarse-graining, fluctuations and colored noise.

Using an example from semiclassical gravity we point out the necessity of self-

consistency in seeking simultaneous solutions of the equations of motion for the

quantum matter field and the Einstein equation for the background spacetime,

and the importance of including fluctuations in this consideration. In Sec. 1.2 we

discuss two main themes: (1) the existence of a stochastic regime in relation to

the quantum and the semiclassical regimes; (2) how the conceptual framework

of open quantum systems and the influence functional, or its close kin, the

‘in-in’ or closed-time-path (CTP) or Schwinger–Keldysh effective action, are

useful to connect these three levels of theoretical structures and the description

of a physical system at each of these three levels. We use the more familiar

moving charge quantum field system to illustrate how a correctly formulated

approach to self-consistent backreaction leads to a modified Abraham–Lorentz–

Dirac (ALD) equation for the motion of a charge with radiation-reaction which

is pathology-free, while including the noise from the quantum field we obtain

an ALD-Langevin equation describing the stochastic dynamics of the moving

charge. In Sec. 1.4 we describe our approach and emphasis, then provide a guide

to the readers.

1.1 From QFT in Curved Spacetime to Semiclassical

and Stochastic Gravity

We begin with the two solid foundations of modern physics, both having stood

the test of time: quantum field theory (QFT) for the description of matter, and

general relativity for the description of the large-scale structure and dynamics

of spacetime. Placing these two together for the description of quantum matter

in a classical gravitational field yields quantum field theory (QFT) in curved

spacetime (CST) – let us call this the Level 1 structure. This theory, largely

accomplished in the 1970s, is now blessed with many excellent reviews and

monographs [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58]. The next

two levels of structure, semiclassical gravity (SCG) at Level 2, established in the

1980s and stochastic gravity (StoG) at Level 3, commenced from the 1990s, are

the target of investigation of this book.

At the first structural level, quantum field theory in curved spacetime describes

the behavior of a quantum matter field, treated as a test field, propagating

in a specified classical background spacetime. Important processes described
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1.1 From QFT to Semiclassical and Stochastic Gravity 3

by this theory range from the Casimir effect of quantum fields in spacetimes

with boundaries [59, 60, 61, 62] or non-trivial topology [63, 64, 65], to effects

of vacuum polarization and vacuum fluctuations such as particle creation in the

early universe [66, 67, 68, 69, 70, 71, 72, 73, 74, 46, 75, 76], and Hawking radiation

of black holes [77, 78, 79, 80, 81, 82, 83], all in the first decade of its development.

The second structural level towards understanding the interaction of quantum

fields with gravity is backreaction, i.e., the effects of quantum matter fields

exerted on the spacetime, impacting on its structure and dynamics. Since the

background spacetime remains classical the quantum matter acting as the source

would have to come from the expectation value of the stress-energy tensor oper-

ator for the quantum fields with respect to some quantum state of symmetries

commensurate with the spacetime. Since this object is quadratic in the field oper-

ators, which are only well defined as distributions on the spacetime, it contains

ultraviolet divergences. Finding viable ways to regularize or renormalize this

quantity defined the task of the second stage, in the mid-70s, in the theoretical

development of QFTCST. Major regularization methods include adiabatic [84,

85, 86, 87], or ‘n-wave’ [69, 71, 88] regularization of quantum fields in dynamical

spacetimes, suitable for cosmological particle creation processes, dimensional

regularization [89, 90, 91, 92] which was successfully applied earlier to proving

the renormalizability of QCD [93, 94, 95], the elegant zeta function method

[96, 97, 98, 99] for quantum fields in spacetimes with Euclidean sections and the

covariant point-separation method [46, 100, 101]. This period ended in 1978,

when different regularization methods converge in producing (almost) the same

results. The essential uniqueness (modulo some terms quadratic in the spacetime

curvature which are independent of the quantum state) in the expectation value

of the stress-energy operator via reasonable regularization techniques was proved

by Wald [102, 103]. The criteria that a physically meaningful expectation value

of the stress-energy tensor ought to satisfy are known as Wald’s axioms.

The theory obtained from a self-consistent solution of the geometry and

dynamics of the spacetime and the quantum matter field is known as semi-

classical gravity. Determining the dynamics of spacetime with self-consistent

backreaction of the quantum matter field is thus its central task: one assumes

a general class of spacetime where the quantum fields live in and act on,

and seeks solutions which satisfy simultaneously the Einstein equation for

the spacetime and the field equations for the quantum fields. The Einstein

equation which has the expectation value of the stress-energy operator of

the quantum matter field as the source is known as the semiclassical Einstein

equation. Semiclassical gravity was first investigated in cosmological backreaction

problems in [104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114]. An example is

the damping of anisotropy in Bianchi universes by the backreaction of particles

created from the vacuum. Using the effect of quantum field processes such as

particle creation to explain why the universe became isotropic in the context

of chaotic cosmology [115, 116, 117] was investigated in the late seventies.
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A well-known example of semiclassical gravity is the inflationary cosmology

proposed in the early eighties by Guth [118] and others [119, 120, 121, 122, 342]

where the vacuum expectation value of a gauge or Higgs field acts as source

in the Einstein equation. It is easy to see that a constant energy density in a

spatially flat Friedmann–Lemâıtre–Robertson–Walker (FLRW) universe gives

rise to exponential expansion, the case of eternal inflation described by a de

Sitter universe. Such a solution is disallowed in classical cosmology because it

corresponds to an unphysical equation of state where the pressure p=−ρ energy

density. A quantum source makes this solution of the semiclassical Einstein

equation not only possible, but, as later development of inflationary cosmology

showed, desirable.

Extending semiclassical gravity to stochastic semiclassical gravity is a Level

3 theoretical structure developed in the nineties. While semiclassical gravity is

based on the semiclassical Einstein equation with the source given by the expec-

tation value of the stress-energy tensor of quantum fields, stochastic semiclassical

gravity includes also its fluctuations in a new stochastic semiclassical Einstein–

Langevin equation. We will often use the shortened term stochastic gravity as

there is no confusion as to the nature and source of stochasticity in gravity, here

being induced by the quantum matter fields and not from classical sources (e.g.,

Moffett’s theory [123]) or residing ab initio in the classical spacetime.

If the centerpiece of semiclassical gravity is the vacuum expectation value of

the stress-energy tensor of a quantum field, the centerpiece in stochastic semi-

classical gravity is the symmetrized stress-energy bitensor and its expectation

value known as the noise kernel . The mathematical properties of this quantity,

its physical contents in relation to the behavior of fluctuations of quantum

fields in curved spacetimes and their backreaction in the spacetime dynamics

engendering induced metric fluctuations are the main focus of this theory. How

the noises associated with the fluctuations of quantum matter fields seed the

structures of the universe, how they affect fluctuations of the black hole horizon

and the backreaction of Hawking radiation on the black hole dynamics, as well as

the implications on trans-Planckian physics, are new horizons to explore. With

regard to the theoretical issues, stochastic gravity is the necessary foundation

to investigate the validity of semiclassical gravity. It is also a useful platform

supported by well-established low energy (sub-Planckian) physics to explore the

connection with high energy (Planckian) physics in the realm of quantum gravity.

If the main issues in QFTCST are finding physically meaningful definitions of

different vacua and how the divergences in the expectation values of the stress-

energy tensor can be controlled by regularization and renormalization, then the

main issues of semiclassical gravity are the self-consistent backreaction of matter

fields and their effects on the structure and dynamics of spacetime. For stochastic

gravity, the main issues are coarse-graining, noise and fluctuations. Let us select

a sample problem (with details extracted from a later chapter) to illustrate the

qualitative features of a backreaction problem in semiclassical gravity.
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1.1 From QFT to Semiclassical and Stochastic Gravity 5

1.1.1 Self-Consistent Backreaction: Nonlocal Dissipation

in Open Systems

Backreaction of quantum processes refers to the effects these processes have

on the source which engenders them. The source could be a strong or time-

dependent background field and the process may entail vacuum polarization or

amplified fluctuation effects manifesting as particle creation. A well known classic

example is the Schwinger process [124] of particle production in strong static

fields. Particle pairs back-reacting on the field engenders dissipative dynamics,

which tends to weaken the field [125, 126, 127]. For time-dependent fields, an

active topic of current research is the dynamical Casimir effect, where vacuum

fluctuations are parametrically amplified into real particles. Indeed, the mech-

anism is the same as in cosmological particle creation, and the backreaction

problem is of interest there because it can significantly alter the dynamics of

the early universe near the Planck time. In like manner particle creation from

a moving mirror is an analog of Hawking radiation from black holes (or Unruh

radiation from an accelerated detector), though the physics is different from

cosmological particle creation, as spacetimes in this class (including the de Sit-

ter universe) possess event horizons and share the same characteristic thermal

distribution of particles created as a result of exponential red-shifting of the

wave modes between the ‘in’ and ‘out’ states. The backreaction of Hawking

radiation is of interest because it can alter the fate of an evaporating black hole

emitting radiation and impacts on the related issues of black hole end state and

information loss.

In semiclassical gravity one considers the effects of quantum matter field pro-

cesses such as vacuum polarization (e.g., trace anomaly) and vacuum fluctuation

(e.g., particle creation) exerted on the classical background spacetime. At the

equation of motion level, the backreaction problem entails solving in a self-

consistent manner both the matter field equations and the Einstein equations

with the expectation values of the matter field as source (e.g., [107, 108]). Alter-

natively one can take the functional approach by integrating over the radiative

contributions of the quantum matter field to obtain a one-loop effective action

of the background gravitational field. From the variation of this effective action

one obtains the equation of motion for the background spacetime now with the

backreaction of matter field incorporated therein.

Two aspects in a backreaction problem at the semiclassical level stand out: one,

related to backreaction, is the importance of self-consistency in the semiclassical

Einstein equation; the other, related to semiclassicality, is decoherence in the

quantum to classical transition and the appearance of dissipative dynamics.

1. Self-consistency in semiclassical gravity The necessity of self-consistency

in the semiclassical backreaction problem is shown by Flanagan and Wald

[128] who used the averaged null energy condition (ANEC) as a criterion to
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verify this requirement. The expectation value 〈Tab〉 of the renormalized stress-

energy tensor of quantum fields generically violates the classical, local positive

energy conditions of general relativity. Nevertheless, it is possible that 〈Tab〉

may still satisfy some nonlocal positive energy conditions, ANEC being the

most prominent. It states that
∫

〈Tab〉k
akb dλ ≥ 0 along any complete null

geodesic, where ka denotes the geodesic tangent, with affine parameter λ. If

ANEC holds, then traversable wormholes cannot occur. However, although

ANEC holds in Minkowski spacetime, it is known that ANEC can be violated

in curved spacetimes if one is allowed to choose the spacetime and quantum

state arbitrarily, without imposition of the semiclassical Einstein equation,

Gab = 8πGn〈Tab〉. Flanagan and Wald study a free, linear, massless scalar

field with arbitrary curvature coupling in the context of perturbation theory

about the flat spacetime/vacuum solution. At first order in the metric and

state perturbations, and for pure states of the scalar field, they find that the

ANEC integral vanishes, as it must for any positivity result to hold. For mixed

states, the ANEC integral can be negative. However, they proved that if the

ANEC integral transverse to the geodesic is averaged, using a suitable Planck

scale smearing function, a strictly positive result is obtained in all cases except

for the trivial flat spacetime/vacuum solution. These results suggest that if

traversable wormholes do exist as self-consistent solutions of the semiclassical

equations, they can only be Planck size. Their finding is in agreement with

conclusions drawn by Ford and Roman [129, 130] from different arguments. (See

also [131, 132, 133].)

2. Coarse-graining, decoherence and dissipation The procedure of inte-

grating over fluctuations of the quantum field to obtain an effective action, and

from there an effective equation of motion, is a form of coarse-graining, which

is arguably the most important element in an open-system way of thinking

[134, 135, 136, 137, 138]. There, a closed system C is divided into a system S of

interest, in this case, the gravitational field, and its environment E, the quantum

matter field. One can actually aim higher, and begin with a closed quantum

system made up of a quantum gravity sector and a quantum matter sector. This

would have been the case if we had a viable theory of quantum gravity – a

theory for the microscopic constituents of spacetime and matter. One can then

ask what conditions are necessary for the gravity sector to become classical.

This was indeed explored in the early 90s, in the realm of quantum cosmology

and semiclassical gravity. A necessary ingredient is decoherence, which can be

understood in several ways, such as by way of decoherent or consistent histories

[139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154,

155, 156, 157, 158, 159, 160, 161, 162, 163, 164] or via environment-induced

decoherence [165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,

179]. We shall describe this aspect later in brief. The study of semiclassical and

stochastic gravity begins with the stage where the gravity sector has already
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1.1 From QFT to Semiclassical and Stochastic Gravity 7

been decohered sufficiently that it can be treated as a classical entity. In the

next section we shall illustrate this procedure with the simple example of a

particle–quantum field interaction, where we know the quantum theory for both

the particle and the field. Here we wish to first highlight the main themes so we

can have a better grasp of the key issues in semiclassical and stochastic gravity.

In doing so we also hope to provide a good motivation for adopting the open

quantum system conceptual framework for deeper inquires.

An Example

Let us examine a typical backreaction problem to highlight the second feature

above, in two parts: (i) backreaction in the form of dissipation in the open system;

(ii) coarse-graining of the environment, noise and fluctuations. We will extract

the results of the calculations and spare the reader of the details, which are to

be presented in Chapter 3.

Consider a massless conformally coupled quantum scalar field in 4 dimensions

obeying the wave equation (2.31) in a classical radiation-filled Bianchi Type I

universe with line element (3.55). (When the anisotropy βij in (3.55) or Q

in (2.31) goes to zero, one recovers the radiation-dominated FLRW universe

with scale factor a.) For spatially flat cosmology, only the expansion rate, i.e.

the derivatives of a, βij are physically meaningful. The one-loop effective action

incorporates the effects of the quantum field on the background geometry. In

the Feynman diagram depiction, the loops account for quantum contributions of

matter fields and the external legs attached to the loops represent the classical

contributions of the gravitational field. The order of the vertices corresponds

to the order of the coupling parameter (in this case β′) in the perturbative

expansion. The one-loop ‘in-out’ effective action for this problem was calculated

in [110, 111]. But for an initial value problem where the evolutionary history

of the system (rather than the transition amplitude) is desired one should use

the ‘in-in’ (Schwinger–Keldysh or closed-time-path) effective action [180, 181]

(expounded in Chapter 3) because only it can produce equations of motion

which are real and causal [182]. The equation of motion for βij with backreaction

from the created particles incorporated therein is an example of the semiclassical

Einstein (SCE) equation.

It is convenient to work with a first integral of the SCE equation (3.107), where

Jij is an external source for switching on the anisotropy in the distant past and

cij =
∫

Jij(η)dη (over conformal time η related to cosmic time t by η =
∫

dt/a(η))

is an integration constant which sets the magnitude and orientation of the initial

anisotropy.

We can write this equation in a schematic form;

d

dη

(

M̃
dqij
dη

)

+K
dqij
dη

+ kqij = cij , (1.1)
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where

M̃ =
1

30(4π)
2
ln(µ̃a), (1.2)

k = −
a2

8πGn

+
1

90(4π)
2

[

(a′

a

)2

+
(a′′

a

)

]

, (1.3)

Kqij =

∫

dη2

∫

dη1f(η2 − η1)
dqij
dη1

, (1.4)

where µ̃ is the renormalization scale, a prime denotes d/dη and K is a non-local

operator acting on the function qij .

This equation is in the form of a damped driven harmonic oscillator where the

“generalized coordinates” qij are the rate of anisotropic expansion β′

ij and the

“generalized driving force” is cij . The “spring consant” k is time-dependent, so

is the real mass M̃ (strictly speaking the damped harmonic oscillator analogy

applies only when these quantities are positive), and the viscous force is velocity-

dependent. The non-local kernel K links the “velocity” qij at different times,

giving rise to a viscosity function γ encapsulating the effects of particle cre-

ation which is history-dependent. This memory effect reflects the non-Markovian

nature of the resultant semiclassical geometrodynamics, and as we shall see, is a

rather generic feature of backreaction processes. This is easy to understand from

an open system viewpoint, the time scale of the natural dynamics of the system

is different from that of the environment. When one incorporates the dynamics

of the environment into that of the system – mathematically it entails turning

two ordinary differential equations, one for each party, into an integro-differential

equation for just one of them – the dynamics of the open system now contains

two time scales reflected in the nonlocal kernel of the integro-differential equation

[134].

With a real and causal equation of motion for qij = β′

ij one can take the Fourier

transform and identify from the dissipative term iωγq(ω) (where q ≡ qijq
ij), i.e.

the “resistance” component in a LCR circuit, the viscosity function γ(ω):

γ(ω) =
|ω|

3

60(4π)2
. (1.5)

The damping of anisotropy going like ω4 translates to a dependence on the

quadrature of the second derivative of βij , which can be identified as the lowest

order terms of the Weyl curvature tensor. This leads to the result that the rate

of particle production in anisotropic or inhomogeneous cosmological spacetimes

is proportional to the Weyl curvature-squared CabcdC
abcd of the background

geometry.

To check if it is correct to associate this viscosity function for the damping

of anisotropy of spacetime with particle creation of the scalar field, one can

calculate the energy dissipated in the spacetime dynamics within the history of
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the universe and the total energy of particles created in the process. If one chooses

to look at the geometrodynamics (the left-hand side of the SCE equation) one

can obtain the (spectral) power P (ω) dissipated by a velocity-dependent viscous

force F acting on the background spacetime simply from P (ω) = F · v. The

dissipated energy density ρ(ω) is obtained by integrating this ‘(spectral) braking

power’ P (ω) over all frequencies.

ρdissipation =

∞
∫

0

dω

2π
[ωβij(ω)

∗

][γ(ω)ωβij(ω)]. (1.6)

Alternatively, focusing on the matter field sector (the right-hand side of the

SCE equation) one can calculate the energy density of particles created from

the vacuum. The power spectrum of particle pairs created by a given anisotropy

history is given by

P(ω) =
1

30π2
ω4Trβ∗(2ω)β(2ω). (1.7)

Integrating over the full spectrum
∫

∞

0
dω(2ω)P(ω) produces the total energy

density of particle pairs created, which is seen to be precisely equal to the energy

density dissipated in the dynamics of spacetime.

This example illustrates that particle creation indeed exerts a dissipative

effect on the background gravitational field. In particular, we have given a field-

theoretical derivation of the viscosity function of the anisotropy damping process.

One can perform similar calculations of particle creation of non-conformal fields

in isotropic universes and obtain the viscosity function from its backreaction on

the background spacetime. The rate of particle production is proportional to the

scalar curvature-squared ξR2 in FLRW spacetimes. For massive particles there

will be a delta-function threshold.

This is all very nice, one may say, but it is only half of the story. An additional

term of a stochastic nature has a reserved seat on the right hand side of (1.1) but

has escaped our attention so far. The identification of it makes up the second part

of this story, highlighting the second key issue, that of noise and fluctuations.

1.1.2 Fluctuations: Colored Noise from Coarse-Graining the

Environment

The above example brings out three main themes of relevance to the subject

matter we shall develop in this book. (1) Surpassing the theoretical structure

of a prescribed curved spacetime exerting a one-way influence on the quantum

fields living in it, the backreaction problem demands an account of the mutual

influence of quantum matter fields present and the background spacetime in a

self-consistent manner as embodied in the semiclassical Einstein equation with

the expectation value of the stress-energy tensor of quantum fields acting as
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its source, which defines semiclassical gravity. (2) The backreaction of quan-

tum field processes such as particle creation alters the state and evolution of

the background spacetime, generally resulting in the appearance of nonlocal

dissipative dynamics. The physical meaning of dissipation can be seen more

clearly in the conceptual framework of open quantum systems: A coarse-grained

environment backreacting on a system results in an open system whose dynamics

is no longer necessarily unitary. (3) In an open system perspective, where the

classical spacetime is viewed as the system and the quantum matter field is

viewed as its environment, a coarse-grained environment can under some rather

general conditions (Gaussian systems for certain) be represented by a noise

term, usually colored. This stochastic forcing term represents the fluctuations

in the environment variables. The inclusion of the fluctuations of the stress-

energy tensor entering as noise turns the semiclassical Einstein equation into an

Einstein–Langevin (E–L) equation which defines stochastic gravity. With a noise

of zero mean under stochastic average, taking the stochastic average of the E–L

eqn reproduces the semiclassical Einstein equation. It is in this sense that the

semiclassical gravity is regarded as a mean field theory.

Historically, the development of stochastic gravity took three stages. Stage 1

began around 1977, when different regularization schemes came to agreement

enough to facilitate a proper treatment of the backreaction problems. By 1987

this task was largely completed, which led to the establishment of semiclassical

gravity. An important step is the realization that the ‘in-out’ effective action must

be replaced by the ‘in-in’ effective action to ensure a real and causal equation of

motion for the spacetime dynamics. Stage 3 began in 1994 when the Einstein–

Langevin equation was first proposed, followed by several worked-out examples.

Why should there be a stochastic term and why was it not appearing earlier in the

semiclassical Einstein equation – these were the questions asked and answered

in the intervening years which marked Stage 2. By 1996 the basic elements of

stochastic gravity were in place and the theoretical structure largely completed

by 2000 [183]. The ensuing years saw applications of stochastic gravity to the

structure formation problem in cosmology and the backreaction and fluctuations

problems in black holes, as well as continual developments in the formulation

of a validity criterion for semiclassical gravity and the calculation of the noise

kernels or the stress-energy tensor correlations for spacetimes of importance to

cosmology and black hole physics.

Let us see what this entails with the example described above. The statement

is that a stochastic term sij can be accommodated on the right-hand side of (1.1)

d

dη

(

M̃
dqij
dη

)

+K
dqij
dη

+ kqij = cij + sij , (1.8)

with sij(η) =
∫

dη′ξij(η
′) where ξij(η) is a Gaussian type noise, which is com-

pletely characterized by its second moment
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