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Prologue

Mobile particulate systems are encountered in various natural and indus-

trial processes. In the broadest sense, mobile particulate systems include

both suspensions and granular media. Suspensions refer to particles dis-

persed in a liquid or a gas. Familiar examples include aerosols such as

sprays, mists, coal dust, and particulate air pollution; biological fluids

such as blood; industrial fluids such as paints, ink, or emulsions in food

or cosmetics. Suspension flows are also involved in numerous material

processing applications, including manufacture of fiber composites and

paper, and in natural processes such as sediment transport in rivers and

oceans. In common usage, a suspension refers to solid particles as the

dispersed state in a liquid, while an emulsion concerns liquid droplets

dispersed in another immiscible fluid, and an aerosol is specific to the

case of a suspension of fine solid or liquid particles in a gas. We focus

on the case of a suspension in this text.

In the flow of suspensions, the viscous fluid between the particles

mediates particle interactions, whereas in dry granular media the fluid

between the particles is typically assumed to have a minor role, doing

no more than providing a resistive drag, and this allows direct contact

interactions. Familiar examples of granular media include dry powders,

grains, and pills in the food, pharmaceutical, and agricultural indus-

tries; sand piles, dredging, and liquefaction of soil in civil engineering;

and geophysical phenomena such as landslides, avalanches, and volcanic

eruptions. However, certain situations go beyond this simple division

between dry and wet granular material. For instance, the flow of dense or

highly concentrated particulate media belongs to an intermediate regime

between pure suspensions and granular flows.

Suspended particles can be of a wide range of sizes. In practical situa-

tions, for the particles to remain suspended for long periods of time, they
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2 Prologue

will usually be smaller than approximately 100 microns in size, as larger

particles settle out of suspension due to gravitational forces. (In labo-

ratory settings the densities of solid and liquid can be closely matched

to keep larger particles suspended.) The small size of the particles often

means that the surrounding flow is dominated by viscous effects, and

therefore that inertial forces can be neglected relative to viscous forces.

Stated in dimensionless terms, this means that the particle Reynolds

number, based on the particle size and the difference in velocities in the

immediate neighborhood of the particle, is small. Particles smaller than

one micron remain more or less permanently in suspension under grav-

ity, owing to the influence of Brownian motion. Suspensions formed of

these small particles are termed colloidal suspensions, as not only Brow-

nian motion, but also colloidal phenomena such as van der Waals forces,

electrical double layers, and capillary forces have significant effects at

this scale where the surface to volume ratio is large.

A single particle moving in a fluid, e.g. a single solid particle falling in

fluid under gravity forces, can be investigated by methods issuing from

classical single-phase models, e.g. the Navier–Stokes equations. How-

ever, particulate suspensions refer generally to a large number of dis-

persed particles moving through a moving fluid and thus to a two-phase

flow which presents a more intimate mixture of the two moving phases.

Their behaviors therefore cannot be described in any practical sense by

the classical models, but require the use of novel concepts and theories:

the key problem is that of the interaction between the particle and fluid

phases which occurs at a complex interface having fluctuating shape,

position, and motion. Even with this complexity, suspensions of rigid

particles are more easily described than many other multiphase flow

systems, and this relative simplicity makes suspensions a model multi-

phase material for which theoretical descriptions may be developed and

tested with some precision. As a result of these factors and their wide

occurrence in nature and in engineering, the dynamics of particulate sus-

pensions is a highly relevant, challenging, and largely unresolved area of

fluid mechanics.

The present book aims at providing a physically based introduction to

the dynamics of particulate suspensions and focuses on hydrodynamical

aspects. While we may address in some cases Brownian and colloidal

suspensions, this is not the central issue. The general approach is made

specific through the most analytically tractable case of low-Reynolds

number suspensions but goes beyond viscous suspensions. The goal is

not to present the subject as closed but instead to present a selection
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Prologue 3

of well-understood problems as an entry to the study of the many open

questions in the field of particulate flows.

The reader is assumed to have completed a course in fluid mechanics or

continuummechanics at the graduate level. This means the reader will be

familiar with both invariant vector and tensor notation, as well as index

notation. This would imply familiarity with establishing boundary-value

problems for the Navier–Stokes equations. Physical content includes the

concepts of viscous and inertial forces/stresses, and the related concept

of dynamical scaling (Reynolds number, for example), and the assump-

tions necessary to be in the Stokes regime.

The book is composed of two primary parts, separated by an interlude

to discuss statistical techniques needed to employ the results of the first

part in the second, followed by an epilogue.

Part I: Microhydrodynamics This part of the book presents the

well-developed theory of particles in viscous fluids. The microscopic

treatment considers only single- and pair-body dynamics. The philoso-

phy is to introduce the theoretical concepts with the least mathematical

burden and to capture their physical meaning through examples and a

few additional exercises at the ends of chapters. A brief overview of the

contents of Part I follows:

1. The book begins with a review of the Stokes-flow regime, justified

through the smallness of the particles and the dominance of viscous

effects. Symmetry, superposition, and reversibility properties of the

motion are developed through examples.

2. The presentation then considers the flows associated with a single

body in viscous fluid, emphasizing through elementary solutions the

structure of the flow solutions for basic situations of translation, rota-

tion, and straining around spheres. The long-range nature of the

decay associated with the flow is demonstrated mathematically and

given physical meaning.

3. More sophisticated solution techniques which allow generalization of

the concepts of the single-body flows are then developed. These tech-

niques give access to presently used approaches underlying numeri-

cal techniques, including the resistance/mobility matrix formulation,

integral representations, and slender-body theory.

4. The presentation then addresses interactions of pairs of spheres, con-

sidering the near- and far-field cases. Lubrication interactions and

the method of reflections are developed. The latter considers worked
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4 Prologue

examples to demonstrate the physical effects of long-range flow on

particle interaction. The connection of these techniques to the form

of the resistance and mobility tensors is made and used to motivate

the simulation approach of Stokesian Dynamics, which is presented

in an abbreviated format.

Interlude: From the microscopic to the macroscopic The micro-

scopic hydrodynamics presented in Part I will be used to develop predic-

tive models for large collections of particles in Part II. This is properly

a problem of statistical mechanical theory. This interlude provides the

basic statistical and stochastic concepts employed in Part II.

Part II: Toward a description of macroscopic phenomena in

suspensions This part combines the microscopic theory of Part I and

the statistical concepts of the Interlude as the foundation for considering

the behavior of large assemblies of hydrodynamically interacting parti-

cles. Note that Part I treats basic and by now relatively classic material,

whereas Part II treats subjects which are still in development and thus is

more tentative. In addition, while the fluid mechanics of a single body or

of pairs of particles is mathematically linear and thus can be fully devel-

oped, many-body dynamics is manifestly nonlinear and irreversible. Part

II of this book presents examples and seeks to illustrate the consequences

and (to a lesser degree because it is not a fully understood topic) the

basis of this nonlinearity.

There are two basic cases: sedimentation and shear flow. In each case,

the coupling between microstructure and the bulk collective phenomena

is a central theme. While sedimentation and shear often occur together,

here they are treated as distinct in order to highlight their essential

features. For sedimentation, these include the dominant effects of slip

between the particle and fluid phases and the resulting hydrodynamic

force on each particle, giving rise to extremely long-range interactions

and surprising spatial correlations of motions. For shear flow, the domi-

nant effect of close pair interactions driven by the flow and the resulting

spatial correlations are shown to give rise to non-Newtonian stresses and

irreversible migration.

This section of the book thus contains:

1. A chapter that presents established results and open questions in

the area of sedimentation. It starts by showing that as soon as three

or more particles are involved the system can become chaotic. But
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Prologue 5

for a larger number of particles, coherent structure and collective

motion are observed. The mean sedimentation rate as a function of

solid fraction and the behavior of the concentration fronts are then

discussed. We also briefly discuss the sedimentation of polydisperse

spheres and non-spherical particles such as fibers, both of which can

differ qualitatively from the case of monodisperse spheres.

2. A chapter devoted to shear flows of suspensions describes the observed

rheology of these materials and develops ideas necessary to describe

the rheology based on a microstructural understanding. The impact

of rheological properties on the bulk fluid mechanics of suspensions is

described. The rheological behavior of orientable particles, with fibers

the primary example, is also briefly considered.

3. This part ends with a chapter that goes beyond Stokes flow and

considers the role of inertia at small but finite particle-scale Reynolds

number. The topic is much less complete than the preceding areas,

and in particular the mathematical aspects are presented as a sketch.

To connect to the earlier material on sedimentation, we consider the

wake interactions of falling particles. To connect to that on shear flow,

we consider the tubular-pinch migration phenomenon and inertially

influenced interactions.

The book ends with an epilogue where we point out some of the open

issues in the current research on particulate flows.
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MICROHYDRODYNAMICS
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1

Basic concepts in viscous flow

In general, we shall be interested in the motion of a mixture composed

of particles in viscous liquid, as illustrated in Figure 1.1. For many cases

of interest, the particles are quite small and/or the fluid is viscous and

therefore we are in the realm of microhydrodynamics , a term coined by

G. K. Batchelor in the 1970s. Under these conditions, it is often legiti-

mate to reduce the Navier–Stokes equations to the Stokes equations; in

other words, inertia in the flow is negligible relative to viscous effects.

The value of this reduction is that it provides a simplification of the fluid-

mechanical description as the Stokes equations are linear. Consequently,

the mathematical solutions are analytically derivable for a number of

basic but important situations. In this chapter we will show under which

conditions this approximation is reached and provide a description of the

properties of solutions to the Stokes equations.

1.1 The fluid dynamic equations

Consider Figure 1.1 showing flow past particles. For simplicity, assume

the particles to be solid bodies idealized as non-deformable (rigid). We

consider the particle dynamics later. Here, we address the continuous

fluid, whose motion is governed by the Navier–Stokes equations, i.e. the

continuity equation for an incompressible fluid,

∇ · u = 0, (1.1)

and the equation for conservation of momentum,

ρ

[

∂u

∂t
+ (u · ∇)u

]

= f +∇ · σa

= f −∇pa + µ∇2
u, (1.2)
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10 Basic concepts in viscous flow

Figure 1.1 Many particles in a flow.

where f is the external body force per unit volume, the dynamic vis-

cosity is µ, and the constant density is ρ. The superscript a indicates

an absolute pressure and a corresponding absolute stress tensor. The

term “absolute stress” is used to indicate the actual stress (with the

absolute pressure being the true pressure) rather than a modified stress

to be defined below, in which the hydrostatic stress field is removed. In

the last equality, we assume the constitutive equation for a Newtonian

fluid which implies the symmetric stress tensor σ
a is given in Einstein

notation1 by

σa
ij = σa

ji = −paδij + 2µeij, (1.3)

1 In index notation, one writes vectors and tensors using indices, so that a vector a

is expressed as its component ai, and a second-rank tensor T by its component
Tij , where the indices i and j take on values of 1, 2, or 3 in three dimensions. For
a thorough discussion, see the book by Aris (1962). The method is implicitly
applied in a Cartesian coordinate frame. Note that results of calculations by the
method may be translated to the invariant vector notation (i.e. where a vector is
expressed as a).
When using index notation for calculations, the Einstein summation convention
is often used. This convention implies summation over repeated indices within a
product expression. Thus, the dot product, a · a, in index notation using the
Einstein convention is written simply as aiai = a2

1
+ a2

2
+ a2

3
. We could equally as

well have written ajaj , as the repeated index is a dummy. An index may not be
repeated three or more times within a product, as the meaning of such an
expression is ambiguous.
Considering quantities arising in fluid mechanics, the divergence of the velocity is
a scalar quantity expressed in the Einstein notation as

∇ · u =
∂ui

∂xi

=
∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3

.

The convective derivative of a vector, (u · ∇)v, yields a vector whose ith
component is uk∂vi/∂xk.
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1.1 The fluid dynamic equations 11

where pa is the absolute pressure, defined as pa =(−1/3)σa
ii, and the

rate-of-strain tensor e is defined as

eij = eji =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

. (1.4)

The quantity δij appearing in (1.3) is called the Kronecker delta.2

The incompressibility condition (1.1) can also be expressed as

ekk = 0. (1.5)

As noted, we will consider the Newtonian dynamics of the particles in

detail later. Here, the influence of the particles arises from the boundary

conditions which they impose upon the fluid motion. It is, of course,

necessary to apply conditions at the outer boundary of the domain of

interest, whether on a containing vessel or at infinity, but here our inter-

est is in the boundary conditions on the particles. The usual condition

is that of no slip, meaning the velocity of the fluid at a point in contact

with a particle surface is the same as the particle velocity at this point.

This condition may be written at the surface of a particle, with center

of mass at xp, as

u(x) = U
p + ω

p × (x− xp), (1.6)

where U
p is the translational velocity and ω

p is the rotational velocity

of the particle. For many particles as shown in Figure 1.1, this condition

must be written for each particle, and because the particles are mobile,

we face a complicated time-dependent boundary-value problem. For the

moment we restrict ourselves to the single-body problem, as illustrated

in Figure 1.2 for a sphere. Furthermore, we will suppose that viscous

effects dominate the fluid dynamics, which will reduce the Navier–Stokes

equations to the Stokes equations. This is justified below by a scaling

argument.

2 The Kronecker delta δij is defined by

δij =

{

0 if i �= j,
1 if i = j.

The Kronecker delta serves as an identity in index notation, in the sense that
δijxj = xi or δijδjk = δik . The expression δijxj = xi is equivalent to I · x = x in
invariant notation using the unit second-rank, or identity, tensor I. Hence, the
Kronecker delta is the identity matrix in matrix–vector calculations. In solving
problems, it is useful to note that the trace of the Kronecker delta is
δii = δ11 + δ22 + δ33 = 3 when used in a three-dimensional problem, and more
generally δii = d where d is the dimensionality of the problem.
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12 Basic concepts in viscous flow

Figure 1.2 One sphere translating and rotating.

1.2 Scaling arguments and the Stokes approximation

The importance of inertial effects compared to viscous effects in equation

(1.2) is measured by the Reynolds number. Suppose the sphere, of radius

a, translates with a velocity of magnitude U . Then the Reynolds number

at the particle scale is

Re =
Ua

ν
∼

|(u · ∇)u|

|ν∇2u|
, (1.7)

where ν = µ/ρ is the kinematic viscosity.

For suspensions, recall that we are usually interested in small length-

scales, typically between 10−2 and 102 µm. As a result of the smallness of

particles, the velocity scale is often small, for example in sedimentation,

where the isolated particle settling velocity scales with the square of its

size, as we will see later. For a grain of sand of size a = 1µm, the settling

velocity in water is of the order of U = 1µms−1 and the Reynolds

number of the motion is thus of O(10−6). Therefore, in many practical

flows of suspensions, the Reynolds number is small and we may neglect

the convective acceleration in the left-hand side of equation (1.2). Some

care must be taken in neglecting the convective acceleration term, as

this scaling argument fails at distances far from the particle, i.e. when
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