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1 Baseband signals and power spectra

The theorem of conjugated pulses
and its application to the raised
cosine autocorrelator

1.1 Introduction

In this chapter, we will review some relevant results of the spectral analysis of random
signals, in particular the matched filter with the raised cosine output response. Owing
to the characteristic property of every matched filter of generating an output pulse which
is the same as the autocorrelation of the input pulse, we will present a detailed analysis of
the raised cosine autocorrelator. This system represents in fact the optimum receiving
filter for the given input additive white noise, providing at the same time the maximum
signal-to-noise power ratio and the absence of any intersymbol interference (ISI). The
raised cosine autocorrelator showing the minimum noise bandwidth is the well-known
Nyquist receiver. It has a frequency response identical to the ideal frequency window of
width equal to the reciprocal of the bit time. These concepts represent a valuable back-
ground well suited for the modeling and comparison of different transmission systems
and photoreceiver architectures. The following sections illustrate some applications of
the raised cosine autocorrelator in conjunction with specific optical modulation formats.

Section 1.2 presents the differential encoding technique, which is extensively used in
the optical demodulation of differential phase shift keying (DPSK) and differential
quadrature phase shift keying (DQPSK) signals. After introducing the operating princi-
ple, the section proceeds with the analysis of the encoding and decoding algorithms,
showing simple circuit realizations. Section 1.3 reviews basic results concerning the
autocorrelation, the power spectrum and the average power of random sequences of
arbitrary pulses. Section 1.4 presents the average power theorem of conjugated pulses as
a consequence of Parseval’s theorem and the symmetry property of the Fourier transform
pair. The average power theorem is useful in the calculation of the average power of
uncorrelated sequences of conjugated pulses, without providing the explicit solution of
the integral forms. The raised cosine pulse and the ideal square pulse, in their respective
conjugated domains, are illustrated as simple analytical applications of the average
power theorem. The section closes with several simulations of the raised cosine pulse
and of the error function pulse.

Sections 1.5 and 1.6 deal with the important concept of uncorrelated random sequen-
ces characterized by the raised cosine power spectrum. The generating pulse is shaped
like the inverse Fourier transform of the square root of the raised cosine spectrum and it is
proportional to the impulse response of the raised cosine autocorrelator. The analytical
form of the noise bandwidth of the raised cosine autocorrelator and the calculation of the
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signal-to-noise ratio close the section. Finally Section 1.7 provides time- and frequency-
domain characterization of the single-pole, Gaussian and Bessel–Thompson responses
up to the eighth order, concluding with a comparison among their respective noise
bandwidths.

1.2 Differential encoding

Although various signal shapes, generated by different optical modulations, will be
analyzed in the following chapters, it is beneficial to introduce differential encoding of
the binary data stream in this context, where more general baseband signals and spectra
will be approached. Differential encoding is a widely used signal pre-processing which
allows direct demodulation of the phase-modulated signals, overcoming the phase
ambiguity problem and without considering the more sophisticated coherent demodu-
lation. Differential encoding is indispensable for the direct detection of phase shift keying
(PSK) and quadrature phase shift keying (QPSK) modulated fields as it provides a simple
encoding procedure that allows symbol recovery at the receiver end, without suffering
the phase ambiguity problem and circumventing more sophisticated coherent detection
schemes. Today, differential encoding is successfully implemented in all PSK and QPSK
optical transmission systems that do not rely on the coherent detection architecture. In
other words, we could consider differential encoding and the coherent detection scheme
as competing architectures for the realization of an optical fiber transmission system
based on phase modulations.

The strength of differential encoding relies on the simplicity of implementation of both
encoder and decoder circuits, even if it does not allow any compensation algorithm for
overcoming transmission impairments as performed indeed by the more complex DSP
(digital signal processing) based coherent optical demodulation schemes. In particular,
differential decoding is somehow a remarkable intrinsic property of both PSK and QPSK
photoreceivers based on the simple delay-line interferometer (DLI). In order to distin-
guish between standard PSK modulation and the differentially encoded PSK, it is
customary to add the letter “D” in front of the phase modulation acronym. Thus we
will indicate by DPSK and DQPSK, respectively, the standard PSK and QPSK optical
modulations where the signal data stream has been differentially encoded before being
applied to the optical modulator.

1.2.1 The differential encoder

The principle of the differential encoder is described by two rules:

S.1 Maintain the logic value of the previous bit each time the input bit assumes a logic low.

S.2 Make a logical transition with respect to the previous bit each time the input bit
assumes a logic high.

It should be apparent that if the input bit an = 0, the differentially encoded output bit bn
maintains the same logic level as bn−1; otherwise it assumes the complementary logic
state. Conversely, when the input bit goes to the high level, the differential encoded
output bit bn makes a transition to the complementary logic state bn−1:
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Differential encoding:
an ¼ 0 ⇒ bn ¼ bn�1
an ¼ 1 ⇒ bn ¼ bn�1

�
ð1:1Þ

In other words, the output bit toggles the logic level every time the input bit goes high and
it remains on the same level when the input bit goes low. The essential principle of
differential encoding applied to binary signals can be summarized as follows:

S.3 Information content is transferred from the logic level to the presence or absence of
transitions between consecutive logic levels.

Accordingly, when two consecutive symbols bn−1, bn of the differentially encoded
stream {bn} assume the same level, the current input an is necessarily in the low state.
Conversely, when two consecutive symbols bn−1, bn toggle the level, the current input an
is necessarily in the high state. Figure 1.1 shows the differential encoding of the {an}
input sequence, assuming ideal not-return-to-zero (NRZ) square-shaped pulses.

The differential encoding rule is represented by the following truth table:

an bn�1 bn
0 0 0

0 1 1

1 0 1

1 1 0

ð1:2Þ

The truth table (1.2) is realized with the modulo-2 adder (EXOR logic) according to the
following differential encoding equation and the schematic circuit reported in Figure 1.2:

bn ¼ an ⊕ bn�1 ð1:3Þ

1.2.2 The differential decoder

The differential decoder performs the inverse operation of the differential encoder,
restoring at the output the original sequence fang. To this end, we report in

{an }

+1

−1

Time

Time

1 0

x (t  ) 0

{bn }

+1

−1

w (t  ) 0

1 1 1 1 1 1 10 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1

T

Figure 1.1 Temporal representation of differential encoding operating on the input sequence {an}.
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Figures 1.3 to 1.6 four properties of the modulo-2 adder together with their respective
circuit realizations:

Identity element: bn ⊕ 0 ¼ bn ð1:4Þ

Complementary element: bn ⊕ 1 ¼ bn ð1:5Þ

Low-logic element : bn ⊕ bn ¼ 0 ð1:6Þ

High-logic element: bn ⊕ bn ¼ 1 ð1:7Þ

In addition to the above identities, note also the associative property:

ðan ⊕ bnÞ⊕ cn ¼ an ⊕ ðbn ⊕ cnÞ ð1:8Þ

bn
bn an

cn 0
1

0
0

cn = bn

0
1

⇒0

Figure 1.3 Identity element of the modulo-2 adder realized with EXOR.

T

+∞

n = −∞
x (t ) = ∑ang (t − nT )

T = 1/B = time step

bn −1

+∞

n = −∞
w (t ) = ∑bng (t − nT )

Figure 1.2 Circuit diagram of the ideal modulo-2 adder for the implementation of the differential encoder.

1
bn an

cn 0
1

1
1

cn = bn

1
0

⇒bn

Figure 1.4 Complementary element of the modulo-2 adder realized with EXOR.

bn
bn bn

cn 0
1

0
1

cn = 0

0
0

⇒bn

Figure 1.5 Low-logic element of the modulo-2 adder realized with EXOR.
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bn

cn 0
1

1
0

cn = 1
1
1

⇒bn

bn

Figure 1.6 High-logic element of the modulo-2 adder realized with EXOR.
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The associative property can be easily verified with the aid of the truth table in (1.2):

an bn cn ðan ⊕ bnÞ⊕ cn an ⊕ ðbn ⊕ cnÞ
0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 0

1 0 0 1 1

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

ð1:9Þ

In order to retrieve the original sequence an, it is sufficient to perform the modulo-2
addition between sequences bn and bn�1. In fact, after substituting for bn the differential
encoding equation (1.3), and applying consecutively the associative property (1.8) and
the identities (1.6) and (1.4), we obtain the original sequence:

bn ⊕ bn�1¼���bn¼an ⊕ bn�1

ðan ⊕ bn�1Þ⊕ bn�1 ¼ an ⊕ ðbn�1 ⊕ bn�1Þ ¼ an ⊕ 0 ¼ an

ð1:10Þ

Figure 1.7 shows a schematic diagram of the differential decoder, according to the
procedure shown in (1.10). The same figure shows in the upper part the complete
differential codec block diagram, including only one delay time. However, the differ-
ential encoder and decoder operations are usually performed upon bidirectional data
fluxes and they cannot be simply cascaded. Accordingly, Figure 1.7 shows in the lower
part the individual encoder and decoder schematics.

In order to have consistent timing between the input sequence and the single-time-
step delayed sequence, it is advisable to use a clocked delay line in the differential

T

an

an
an

an

bn

bnbn

T
bn−1 bn−1

bn −1

bn−1

T

Differential decoder

Differential codec

Differential encoder

Figure 1.7 Circuit diagram of the differential decoder. At the top is the cascaded codec configuration, using
only one delay line shared between the encoder and the decoder session. At the bottom are the
individual block diagrams of the differential encoder and decoder sessions.
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encoder and decoder. To this end, the delay line T must be replaced with a D-type flip-
flop (D-FF), with the same clock used for generating the data sequence. We note that the
D-FF operates synchronously with the clock edges. Usually, the input data are gathered
during the rising edge of the clock pulse, and they are released synchronously with the
output during the subsequent falling edge. In order to acquire correctly the input data,
the latter must be stable during the preset and hold time intervals across the rising edge
of the clock pulse. Accordingly, the design of both circuits must include the accurate
analysis of the signal propagation times, both in the clocked D-FF as well as in the
asynchronous EXOR port. In clocked implementation, data sequences at both input
ports of the EXOR will be available with the appropriate timing, avoiding false
transitions and related code errors.

1.3 Random sequences and power spectra

In this section, we will discuss some relevant results of the spectral analysis [1]. With
the sequence {an} of real numbers, we form the clocked impulse sequence s(t), with time
step T:

sðtÞ ¼
Xþ∞
n¼�∞

anδðt � nTÞ ð1:11Þ

The autocorrelation Rs(t) of the impulse sequence (1.11) is also a sequence of impulses
with real coefficients An:

Rs ðtÞ≜ lim
σ→∞

1

2σ ∫
þσ

�σ
sðt þ τÞs*ðτÞdτ ⇒ RsðtÞ ¼ 1

T

Xþ∞
n¼�∞

Anδ ðt � nTÞ ð1:12Þ

where

An ¼ lim
k→∞

1

2k

Xþk
m¼�k

amamþn ð1:13Þ

The left side of (1.12) is the definition of the autocorrelation of finite power signals.
As can be easily demonstrated, the coefficients An in (1.13) satisfy the symmetry
condition

A�n ¼ An ð1:14Þ

From (1.12) and (1.14), we conclude that the power spectrum Ss( f ) of the impulse
sequences S(t) in (1.11) is the following real and even periodic function of the
frequency:

Ss ðf Þ ¼ A0

T
þ 1

T

Xþ∞
n¼1

An ðeþjn2πfT þ e�jn2πfT Þ ¼ A0

T
þ 2

T

Xþ∞
n¼1

An cos n2πfT ð1:15Þ

Let us consider below some relevant applications.
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1.3.1 Uncorrelated random sequence of impulses

We assume that the random sequence fang of real coefficients is uncorrelated in the sense
that it satisfies the following conditions:

an
� �

:

lim
k→∞

1

2k

Xþk
m¼�k
hamamþni ¼ 0 ; 8n ≠ 0

lim
k→∞

1

2k

Xþk
m¼�k
ha2mi ¼ A2 ; am ¼ ½�A;þA�

8>>>><>>>>: ð1:16Þ

with A a real positive constant:

sðtÞ ¼
Xþ∞
n¼�∞

anδðt � nTÞ ð1:17Þ

The first requirement in (1.16) represents the uncorrelation condition, while the second
one specifies the energy of the single impulse of the sequence (1.11). For the uncorrelated
sequence fang satisfying (1.16), the coefficients An in (1.13) must be identically null,
except for n = 0, where A0 = A2. Consequently, the autocorrelation (1.12) of the random
sequence (1.17) of uncorrelated impulses coincides with the single impulse at the time
origin:

RsðtÞ ¼ A2

T
δðtÞ ð1:18Þ

From (1.18), we conclude that the power spectrum Ssðf Þ of the uncorrelated impulse
sequences sðtÞ, whose coefficients satisfy (1.16), assumes a constant value (white spectrum):

Ssðf Þ ¼ A2

T
ð1:19Þ

1.3.2 Uniform sequence of impulses (comb spectrum)

The second example we will consider deals with a uniform sequence of equidistant
impulses. In a sense this is the complementary case to the random sequence we analyzed
in Section 1.3.1. From (1.19) we concluded that the power spectrum of random uncorre-
lated impulses is constant over the whole frequency axis, leading to the concept of a
“white noise” process. In the current case of a uniform sequence of impulses, we assume
that the sequence fang consists of constant coefficients for every index n. Setting an = A,
s(t) in (1.11) reduces to the deterministic uniform sequence of impulses with constant
area (comb signal):

sðtÞ ¼ A
Xþ∞
n¼�∞

δðt � nTÞ ð1:20Þ

From (1.13), we deduce easily that all coefficients An of the autocorrelation function ρs(t)
are equal to the constant A2:
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An ¼ A2 lim
k→∞

1

2k

Xþk
m¼�k

m ¼ A2 ð1:21Þ

Substituting (1.21) into (1.12), we conclude that the autocorrelation function is the
sequence of equidistant impulses with constant area A2/T:

RsðtÞ ¼ A2

T

Xþ∞
n¼�∞

δðt � nTÞ ð1:22Þ

Furthermore, the power spectrum of the uniform sequence of impulses is given by the
Fourier transform of (1.22):

Ssðf Þ ¼ A2

T

Xþ∞
n¼�∞

ejn2πfT ð1:23Þ

Finally, using the well-known result [1]

Xþ∞
n¼�∞

ejn2πfT ¼ 1

T

Xþ∞
n¼�∞

δðf � n=TÞ ð1:24Þ

we conclude from (1.23) that the power spectrum of S(t) is a uniform sequence of
equidistant frequency impulses, spaced by 1/T (see Figure 1.8):

Ssðf Þ ¼ A2

T2

Xþ∞
n¼�∞

δðf � n=TÞ ð1:25Þ

t0

A

T 2T−2T

s (t )

−T

t0

A2

T

T 2T

Rs(t )

−2T −T

f0

Ss(t )

A2

T 2

1
T

2
T

− 2
T

− 1
T

Figure 1.8 The autocorrelation ρs(t) of the sequence s(t) of equidistant impulses of constant area A is also a
sequence of impulses with the same time step T and area A2/T. The power spectrum is also a
sequence of equidistant impulses of frequency step 1/T and area A2/T2.
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