
1 Basic Concepts and Fluid Properties

1.1 Introduction

The science of fluid mechanics has matured over the last 200 years, but even today
we do not have complete and exact solutions to all possible engineering problems.
Although the governing equations (called the Navier–Stokes equations) were estab-
lished by the mid-1800s, solutions did not follow immediately. The main reason is
that it is close to impossible to analytically solve these nonlinear partial differential
equations for an arbitrary case. Consequently, the science of fluid mechanics has
focused on simplifying this complex mathematical model and on providing partial
solutions for more restricted conditions. Therefore the different chapters on classi-
cal fluid mechanics are based on retaining different portions of the general equation
while neglecting other lower-order terms. This approach allows the solution of the
simplified equation, yet preserves the dominant physical effects (relevant to that
particular flow regime). Finally, with the enormous development of computational
power in the 21st century, numerical solutions of the fluid mechanic equations have
become a reality. However, in spite of these advances, elements of modeling are still
used in these solutions, and the understanding of the “classical” but limited models
is essential for successfully using these modern tools.

This first chapter provides a short introduction on the historical evolution of
fluid mechanics and a brief survey of fluid properties. After this introduction, the
fluid dynamic equations are developed in the next chapter.

1.2 A Brief History

The science of fluid mechanics is neither new nor biblical; however, most of the
progress in this field was made in the 20th century. Therefore it is appropriate to
open this text with a brief history of the discipline, with only a very few names men-
tioned.

As far as we can document history, fluid dynamics and related engineering
were always integral parts of human evolution. Ancient civilizations built ships,
sails, irrigation systems, and flood-management structures, all requiring some basic
understanding of fluid flow. Perhaps the best known early scientist in this field is
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2 Basic Concepts and Fluid Properties

Archimedes of Syracuse (287–212 b.c.e.), founder of the field now we call “fluid
statics,” whose laws on buoyancy and flotation are used to this day.

A major leap in understanding fluid mechanics began with the European
Renaissance of the 14th–17th centuries. The famous Italian painter–sculptor,
Leonardo da Vinci (1452–1519), was one of the first to document basic laws such
as the conservation of mass. He sketched complex flow fields, suggested feasible
configurations for airplanes, parachutes, and even helicopters, and introduced the
principle of streamlining to reduce drag.

During the next couple of hundred years, the sciences were gradually devel-
oped and then suddenly accelerated by the rational mathematical approach of an
Englishman, Sir Isaac Newton (1642–1727), to physics. Apart from the basic laws of
mechanics, and particularly the second law connecting acceleration with force, the
concepts for drag and shear in a moving fluid were developed by Newton, and his
principles are widely used today.

The foundations of fluid mechanics really crystallized in the 18th century. One
of the more famous scientists, Daniel Bernoulli (1700–1782, Dutch-Swiss), pointed
out the relation between velocity and pressure in a moving fluid, an equation that
bears his name appears in every textbook. However, his friend Leonhard Euler
(1707–1783, Swiss born), a real giant in this field, is the one who actually formulated
the Bernoulli equations in the form known today. In addition, Euler, using Newton’s
principles, developed the continuity and momentum equations for fluid flow. These
differential equations, the Euler equations, are the basis for modern fluid dynam-
ics and perhaps the most significant contribution to the process of understanding
fluid flows. Although Euler derived the mathematical formulation, he did not pro-
vide solutions to his equations. (Note that Euler is pronounced “oiler,” not “yuler”;
hence we have “an Euler equation.”)

Science and experimentation in the field increased, but it was only in the 19th
century that the governing equations were finalized in the form known today. A
Frenchman, Claude-Louis-Marie-Henri Navier (1785–1836), understood that fric-
tion in a flowing fluid must be added to the force balance. He incorporated these
terms into the Euler equations and published the first version of the complete set
of equations in 1822. These equations are known today as the Navier–Stokes equa-
tions. Communications and information transfers were not well developed in those
days. For example, Sir George Gabriel Stokes (1819–1903) lived on the English side
of the English Channel but did not communicate directly with Navier. Indepen-
dently, he also added the viscosity term to the Euler equations. Hence the glory is
shared by both scientists for these equations. Stokes can be also considered the first
to solve the equations for the motion of a sphere in a viscous flow, which is now
called “Stokes flow.”

Although the theoretical basis for the governing equation had been laid down
by now, it was clear that the solution was far out of reach. Therefore scientists
focused on “approximate models,” using only portions of the equation that could
be solved. Experimental fluid mechanics also gained momentum, with important
discoveries by Englishman Osborne Reynolds (1842–1912) about turbulence and
transition from laminar to turbulent flow. This brings us to the 20th century, when
science and technology grew at an explosive rate, particularly after the first powered
flight of the Wright brothers in the United States (December 1903). Fluid mechanics
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1.3 Dimensions and Units 3

attracted not only the greatest talent but also investments from governments as the
potential of flying machines was recognized. If only one name is mentioned per cen-
tury, then Ludwig Prandtl (1874–1953) of Göttingen, Germany, deserves the glory
for the 20th century. He made tremendous progress in developing simple models
for problems such as the flow in boundary layers and over airplane wings.

This trend of solving models and not the complex Navier–Stokes equations con-
tinued well into the mid-1990s, until the tremendous growth in computer power
finally allowed numerical solutions of these equations. Physical modeling is still
required, but the numerical approach allows the solutions of nonlinear partial differ-
ential equations, an impossible task from the pure analytical point of view. Nowa-
days, the flow over complex shapes and the resulting forces can be computed by
commercial computer codes, but without being exposed to simple models, our abil-
ity to analyze the results would be incomplete.

1.3 Dimensions and Units

The magnitude (or dimensions) of physical variables is expressed in engineering
units. In this book we follow the metric system, which was accepted by most profes-
sional societies in the mid-1970s. This International system, (SI for Systeme Interna-
tional) of units is based on the decimal system and is much easier to use than other
(e.g., British) systems of units. For example the basic length is measured in meters
(m): 1000 m is a kilometer (km) and 1/100 of a meter is a centimeter (cm). Along
the same line, 1/1000 m is a millimeter (mm).

Mass is measured in grams (g), which is the mass of one cubic centimeter
(1 cm3) of water. One thousand grams are one kilogram (kg), and 1000 kg are one
metric ton. Time is still measured the old-fashioned way, in hours (h), 1/60 of an
hour is a minute (min), and 1/60 of a minute is a second (s).

For this book, velocity is one of the most important variables, and its basic mea-
sure therefore is meters per second (m/s). Vehicle speeds are usually measured in
kilometers per hour (km/h) and clearly 1 km/h = 1000/3600 = 1/3.6 m/s. Acceler-
ation is the rate of change of velocity and therefore it is measured in meters per
second squared (m/s2).

Newton’s second law defines the units for the force F when a mass m is acceler-
ated at a rate of a:

F = ma = kg
m
s2

.

Therefore this unit is called a newton (N = kg m
s2 ). Sometimes the unit kilogram-

force (kgf) is used because the gravitational pull of 1-kg mass at sea level is 1 kgf. If
we approximate the gravitational acceleration as g = 9.8 m/s2, then

1 kgf = 9.8 N.

The pressure, which is the force per unit area, is measured with the previous units,

p = F
S

=
kg · m

s2

m2
= N

m2
= 1 Pascal (Pa);
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4 Basic Concepts and Fluid Properties

this unit is named for the French scientist Blaise Pascal (1623–1662). Sometimes an
atmosphere (atm) is used to measure pressure, and this unit is about 1 kgf/cm2, or,
more accurately,

1 atm = 1.013 × 105 N/m2.

In the following sections we discuss some of the more important fluid properties
along with the units used to quantify them. In reality, there are a large number of
engineering units, and a list of the most common ones is provided in Appendix A.

1.4 Fluid Dynamics and Fluid Properties

Fluid dynamics is the science dealing with the motion of fluids. Fluids, unlike solids,
cannot assume a fixed shape under load and will immediately deform. For example,
if we place a brick in the backyard pool it will sink because the fluid below is not
rigid enough to hold it.

Both gases and liquids behave similarly under load and both are considered
fluids. A typical engineering question that we’ll try to answer here is this: What are
the forces that are due to fluid motion? Examples could focus on estimating the
forces required for propelling a ship or for calculating the size and shape of a wing
required for lifting an airplane. So let us start with the first question: What is a fluid?

As noted, in general, we refer to liquids and gases as fluids, but we can treat the
flow of grain in agricultural machines, a crowd of people leaving a large stadium,
or the flow of cars by using the principles of fluid mechanics. Therefore one of the
basic features is that we can look at the fluid as a continuum and not analyze each
element or molecule (hence the analogy to grain or seeds). The second important
feature of fluids is that they deform easily, unlike solids. For example, a static fluid
cannot resist a shear force and the particles will simply move. Therefore, to generate
shear force, the fluid must be in motion. This is clarified in the following subsections.

1.4.1 Continuum

Most of us are acquainted with Newtonian mechanics, and therefore it would be
natural for us to look at particle (or group of particles) motion and discuss their
dynamics by using the same approach used in courses such as dynamics. Although
this approach has some followers, let us first look at some basics.

Consideration a: The number of molecules is very large and it would be difficult
to apply the laws of dynamics, even when a statistical approach is used. For exam-
ple, the number of molecules in one gram-mole (1 g mole) is called the Avogadro
number (after the Italian scientist, Amadeo Avogadro, 1776–1856). 1 g mole is the
molecular weight multiplied by 1 g. For example, for a hydrogen molecule (H2) the
molecular weight is 2; therefore 2 g of hydrogen are 1 g mole. The Avogadro number
NA is

NA = 6.02 × 1023molecules/g mole. (1.1)

Because the number of molecules is very large, it is easier for us to assume a con-
tinuous fluid rather than to discuss the dynamics of each molecule or even their
dynamics by using a statistical approach.
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1.4 Fluid Dynamics and Fluid Properties 5

Consideration b: In gases, which we can view as the least condensed fluids, the
particles are far from each other, but as Brown (Robert Brown, botanist, 1773–1858)
observed in 1827, the molecules are constantly moving, and hence this phenomenon
is called Brownian motion. The particles move at various speeds and in arbitrary
directions, and the average distance between particle collisions is called the mean
free path λ, which for standard air is about 6 × 10−6 cm. Now, suppose that a pres-
sure disturbance (or a jump in the particle velocity) is introduced; this effect will
be communicated to the rest of the fluid by the preceding interparticle collisions.
The speed that this disturbance spreads in the fluid is called the speed of sound, and
this gives us an estimate about the order of molecular speeds (the speed of sound
is about 340 m/s in air at 288 K). Of course, many particles must move faster than
this speed because of the three-dimensional (3D) nature of the collisions (see Sec-
tion 1.6). It is only logical that the speed of sound depends on temperature because
temperature is related to the internal energy of the fluid. If this molecular mean-
free-path distance λ is much smaller than the characteristic length L in the flow
of interest (e.g., L ∼ the chord of an airplane’s wing) then, for example, we can
consider the air (fluid) as a continuum! In fact, a nondimensional number, called
the Knudsen number (after the Danish scientist Martin Knudsen, 1871–1949), exists
based on this relation:

Kn = λ

L
. (1.2)

Thus, if Kn < 0.01, meaning that the characteristic length is 100 times larger than the
mean free path, then the continuum assumption may be used. Exceptions for this
assumption of course would be when the gas is very rare (Kn > 1), e.g., in vacuum
or at very high altitudes in the atmosphere.

Therefore, if we agree on the concept of a continuum, we do not need to trace
individual molecules (or groups of molecules) in the fluid but rather we should
observe the changes in the average properties. Apart from properties such as density
or viscosity, the fluid flow may have certain features that must be clarified early on.
Let us first briefly discuss frequently used terms such as laminar and turbulent and
attached and separated flows, and then focus on the properties of the fluid material
itself.

1.4.2 Laminar and Turbulent Flows

Now that, by means of the continuum assumption, we have eliminated the discus-
sion about arbitrary molecular motion, a somewhat similar but much larger-scale
phenomenon must be discussed. For the discussion let us assume a free-stream flow
along the x axis with uniform velocity U. If we follow the traces made by several
particles in the fluid we would expect to see parallel lines, as shown in the upper
part of Fig. 1.1. If, indeed, these lines are parallel and flow in the direction of the
average velocity and the motion of the fluid seems to be “well organized,” then this
flow is called laminar. If we consider a velocity vector in a Cartesian system,

�q = (u, v, w), (1.3)
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6 Basic Concepts and Fluid Properties

Laminar flow

Turbulent flow

Figure 1.1. Schematic description
of laminar and turbulent flows hav-
ing the same average velocity.

then for this steady-state flow the velocity vector will be

�q = (U, 0, 0), (1.3a)

and here U is the velocity in the x direction.
On the other hand, it is possible to have the same average speed in the flow,

but in addition to this average speed the fluid particles will momentarily move in
the other directions (lower part of Fig. 1.1). The fluid is then called turbulent (even
though the average velocity Uav could be the same for both the laminar and tur-
bulent flows). In this two-dimensional (2D) case the flow is time dependent every-
where, and the velocity vector then becomes

�q = (Uav + u′, v′, w′), (1.4)

where u′, v′, and w′ are the perturbations in the x, y, and z directions. Also, it is clear
that the average velocities in the other directions are zero:

Vav = Wav = 0.

So if a simple one-dimensional (1D) laminar flow transitions into a turbulent flow,
then it also becomes 3D (not to mention time dependent). Knowing whether
the flow is laminar or turbulent is very important for most engineering problems
because features such as friction and momentum exchange can change significantly
between these two types of flow. The fluid flow can become turbulent in numerous
situations such as inside long pipes or near the surface of high-speed vehicles.

1.4.3 Attached and Separated Flows

By observing several streamline traces in the flow (by injecting smoke, for example),
we can see if the flow follows the shape of an object (e.g., a vehicle’s body) close to
its surface. When the streamlines near the solid surface follow exactly the shape of
the body [as in Fig. 1.2(a)], the flow is considered to be attached. If the flow does not
follow the shape of the surface [as seen behind the vehicle in Fig. 1.2(b)], then the
flow is considered detached or separated. Usually such separated flows behind the
vehicle will result in an unsteady wake flow, which can be felt up to large distances
behind the vehicle. Also, in Fig. 1.2(b) the flow is attached on the upper surface and
is separated only behind the vehicle. As we shall see later, having attached flow fields
is extremely important because the vehicle with the larger areas of flow separation
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1.5 Properties of Fluids 7

Separated flow

Attached flow(a)

(b)

U∞

Figure 1.2. (a) Attached flow over a streamlined car and (b) the locally separated flow behind
a more realistic automobile shape.

is likely to experience higher resistance (drag). Now, to complicate matters, if the
flow above this model is turbulent then, because of the momentum influx from the
outer fluid layers, the flow separation can be delayed.

1.5 Properties of Fluids

Fluids, in general, may have many properties related to thermodynamics, mechan-
ics, or other fields of science. In the following subsections, only a few, which are used
in introductory fluid mechanics, are mentioned.

1.5.1 Density

Density, by definition, is mass per unit volume. In the case of fluids, we can define
the density (with the aid of Fig. 1.3) as the limit of this ratio when a measuring
volume V shrinks to zero. We need to use this definition because density can change
from one point to the other. Also in this picture, we can relate to a volume element
in space that we can call “control volume,” which moves with the fluid or can be
stationary (in any case it is better to place this control volume in inertial frames of
reference).

Therefore the definition of density at a point is

ρ = lim
V→0

(m
V

)
. (1.5)

Typical units are kilograms per cubic meter (kg/m3) or grams per cubic centimeter
(g/cm3).

m

V

Control volume

Figure 1.3. Mass m in a control volume V. Density is the ratio of
m/V.
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8 Basic Concepts and Fluid Properties

dS

n

Figure 1.4. Pressure acts normal to the surface dS
(�n is the unit vector normal to the surface).

1.5.2 Pressure

We can describe the pressure p as the normal force F per unit area acting on a
surface S. Again, we use the limit process to define pressure at a point, as it may
vary on a surface:

p = lim
S→0

(
F
S

)
. (1.6)

Bernoulli pictured the pressure as being a result of molecules impinging on a
surface (so this force per area is a result of the continuous bombardment of the
molecules). Therefore, the fluid pressure acting on a solid surface is normal to the
surface, as shown in Fig. 1.4. Consequently the force direction is obtained by multi-
plying with the unit vector �n normal to the surface. Because the pressure acts normal
to a surface the resulting �F force is

�F = −p�n ds. (1.7)

Here the minus sign is a result of the normal unit vector pointing outside the surface
while the force that is due to pressure points inward. Also note that the pressure at
a point inside a fluid is the same in all directions. This property of the pressure is
called isetropic. The observation about the fluid pressure at a point acting equally in
any arbitrary direction was documented first by Blaise Pascal (1623–1662).

The units used for pressure were introduced in Section 1.3. However, the pascal
is a small unit; the units used more often are the kilopascal (kP), the atmosphere
(atm), or the bar (bar has no abbreviation; hence the correct use is: 1 bar or 5 bars):

1 kP = 1000
N
m2

, 1 atm = 101,300
N
m2

, 1 bar = 100,000
N
m2

.

1.5.3 Temperature

Temperature is a measure of the internal energy at a point in the fluid. Over the
years different methods have evolved to measure temperature; for example, the
freezing point of water is considered zero in the Celsius system and the boiling tem-
perature of water under standard conditions is 100 ◦C. Kelvin units (K) are similar
to Celsius; however, they measure the temperature from absolute zero, a temper-
ature found in space, and they represent a condition when molecular motion will
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1.5 Properties of Fluids 9

stop. The relation between the two temperature-measuring systems is

K = 273.16 + ◦C. (1.8)

The Celsius system is widely used in European countries whereas in the United
States, Fahrenheit units are still used. In this case, 100 ◦F was set to be close to the
human body’s temperature. The conversion between these temperature-measuring
systems is

◦C = 5/9(◦F − 32), (1.9)

which indicates that 0 ◦C = 32 ◦F . The absolute temperature in these units is in
Rankine units (◦R) and this scale is higher by 459.69◦:

◦R = 459.69 + ◦F. (1.10)

Now that we have introduced density, pressure, and temperature, it is important to
recall the ideal-gas relation, in which these properties are linked together by the gas
constant R:

p/ρ = RT. (1.11)

If we define v as the volume per unit mass then v = 1/ρ, and we can write

pv = RT. (1.12)

However, R is different for various gases or for their mixtures, but it can be easily
calculated with the universal gas constant R (R = 8314.3 J/mol K). Then we can find
R by dividing this universal R by the average molecular weight M of the mixture of
gases.

EXAMPLE 1.1. THE IDEAL-GAS FORMULA. As an example, for air we can assume
M = 29 and therefore

R = R/M = 8314.3/29 = 286.7 m2/(s2 K) for air. (1.13)

Suppose we want to calculate the density of air when the temperature is 300 K
and the pressure is 1 kgf/cm2:

ρ = p/RT = 1 × 9.8 × 104/286.7 × 300 = 1.139 kg/m3.

Here we used 1 kgf/cm2 = 9.8 × 104 N/m2 and g = 9.8 m/s2.
Another interesting use of the universal gas constant is when we can cal-

culate the volume (V) of 1 g mole of gas in the following conditions (e.g.,
T = 300 K and p = 1 atm = 101,300 N/m2). For air we should take 29 g because
M = 29 and therefore R is multiplied by 10−3 because we considered 1 g mole
and not 1 kg mole:

V = RT/p = 8314.3 × 10−3 × 300/101,300 = 24.62 × 10−3 m3 = 24.62 L.

Note that 1 g mole of any gas will occupy the same volume because we have
the same number of molecules (as postulated by Avogadro). Also, L is one liter
(= 0.001 m3).

1.5.4 Viscosity

The viscosity is a very important property of fluids, particularly when fluid motion is
discussed. In fact, the schematic diagram of Fig. 1.5 is often used to demonstrate the
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10 Basic Concepts and Fluid Properties

No-slip condition

No-slip conditionSolid boundaries

x

z

F

Fluid

U∞

h

Figure 1.5. The flow between two
parallel plates. The lower is sta-
tionary while the upper moves at a
velocity of U∞.

difference between solids and fluids. A fluid must be in motion in order to generate
a shear force, whereas a solid can support shear forces in a stationary condition.

In this figure the upper plate moves at a velocity of U∞ while the lower surface
is at rest. A fluid is placed between these parallel plates, and when the upper plate
is pulled, a force F is needed. At this point we can make another important observa-
tion. The fluid particles in immediate contact with the plates will not move relative
to the plates (as if they were glued to it). This is called the no-slip boundary condi-
tion, and we will use this in later chapters. Consequently we can expect the upper
particles to move at the upper plate’s speed while the lowest fluid particles attached
to the lower plate will be at rest. Newton’s law of friction states that

τ = μ
dU
dz

. (1.14)

Here τ is the shear force per unit area (shear stress) and μ is the fluid viscosity. In
this case the resulting velocity distribution is linear and the shear will be constant
inside the fluid (for h > z > 0). For this particular case we can write

τ = μ
U∞
h

. (1.15)

A fluid that behaves like this is called a Newtonian fluid, indicating a linear relation
between the stress and the strain. As noted earlier, this is an important property of
fluids because without motion there is no shear force.

The units used for τ are force per unit area, and the units for the viscosity μ are
defined by Eq. (1.14). Some frequently used properties of some common fluids are
provided in Table 1.1.

Table 1.1. Approximate properties of some common fluids at 20 ◦C (ρ = density,
μ = viscosity, σ = surface tension)

Fluid ρ (kg/m3) μ (N s/m2) σ (N/m)

Air 1.22 1.8 × 10−5

Helium 0.179 1.9 × 10−5

Gasoline 680 3.1 × 10−4 2.2 × 10−2

Kerosene 814 1.9 × 10−3 2.8 × 10−2

Water 1000 1.0 × 10−3 7.3 × 10−2

Sea water 1030 1.2 × 10−3 7.3 × 10−2

Motor oil (SAE 30) 919 0.29 3.6 × 10−2

Glycerin 1254 0.62 6.3 × 10−2

Mercury 13600 1.6 × 10−3 4.7 × 10−1
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