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Preface

Aim

This book presents the basics of locally convex theory over a field K with a non-

Archimedean valuation | . | : K−→[0,∞) (see 1.2.3).1 The most important

example of such a K is the field of the p-adic numbers (1.2.7). The strong

triangle inequality |λ + µ| ≤ max(|λ| , |µ|) is the major difference between

| . | and the absolute value function on the field of real numbers R and the

field of complex numbers C. Likewise, the defining seminorms of our locally

convex spaces will satisfy the strong triangle inequality.

The book is self-contained in the sense that it does not require knowledge

of any deep theory; only basic knowledge of (linear) algebra, analysis and

topology are needed. It is intended for both (graduate) students and interested

researchers in other areas, but is also of relevance for specialists.

History

The founding father of non-Archimedean Functional Analysis was Monna,

who wrote a series of papers in 1943 (see [152]–[155]). Over the years a well-

established discipline developed, reflected in the 2000 Mathematics Subject

Classifications 46S10 and 47S10 of the Mathematical Reviews. A milestone

was reached in 1978 at the publication of van Rooij’s book [193], the most exten-

sive treatment on non-Archimedean Banach spaces existing in the literature.

In the meantime van Tiel had published his thesis [227] on non-Archimedean

locally convex spaces. Both fundamental works still form a basis for new

developments, and have been cited by many authors. We should also mention

1 Note that in this book all proofs, definitions, theorems, etc. are numbered decimally by chapter.
They will be referred to by number only.

xi
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xii Preface

the proceedings of conferences on non-Archimedean analysis which were held

every two years from 1990 onwards, [21], [88], [20], [209], [107], [135], [208],

[45], [2], containing several publications on locally convex theory (we have

listed the references in chronological order).

The time had come for a volume on locally convex theory to appear and the

present book hopefully provides an answer to this need. Our aim is to cover the

fundamentals by setting up a general theory which allows a wide spectrum of

subjects and examples. Our proof techniques are analytically oriented. In this

context we would like to point out Schneider’s book [210]. Whereas our book is

directed towards a rather general readership, Schneider, as he explains himself,

had a different motivation, i.e., to offer a quick grasp to a reader working in other

areas (such as number theory). Because of this, he allows for restrictions, for

example working mainly over spherically complete fields. Also, the treatment

in [210] has a more algebraic flavour. Despite these differences, Schneider’s

book and ours are compatible and one can be used to complement the reading

of the other.

Foreign affairs

Complex numbers provide an excellent domain for forcing quadratic equations

to have solutions. Likewise, the p-adic number field acts as a natural home for

solving certain infinite systems of congruences, so it takes a prominent place

in number theory. But also in other branches (such as algebraic geometry;

representation of (Lie) groups; (several) complex variables; real analysis; even

theoretical physics, see e.g. [34], [47] and [140]), one is more interested in the

role non-Archimedean fields could play as fundamental objects. Researchers

in those disciplines sometimes need a solid background in non-Archimedean

locally convex spaces; we have mentioned Schneider’s reason for writing his

book. This has also influenced the set up of our book, as we will later explain.

The presence of the vast area of Functional Analysis over R or C, henceforth

called “classical analysis” is, of course, a fruitful source of inspiration for the

non-Archimedean case. However, the reader will notice that, in the course of the

development of the theory, the non-Archimedean world is equally fascinating,

and asks for a mathematical intuition of its own.

Book organization

In Chapter 1 we present the basics of ultrametric spaces and valued fields. In

Section 1.2 we quote several theorems on valued fields without proof (but with
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Preface xiii

references) as we feel that otherwise it would lead us too far away from our

main track. For that matter, the results are hardly needed, but may serve to offer

the reader an impression.

Starting from Chapter 2 our policy changes: with obvious exceptions we

present full proofs, as they really belong to the subject of the book. According

to our experiences, in such cases not only the mere statements, but also their

proofs, are needed in order to obtain understanding and intuition. We have

also applied this philosophy to those parts in which the classical and the non-

Archimedean theories seem to be similar. Not only does it facilitate a better

grasp of the subtle differences but also serves those readers who may not be

familiar with classical Functional Analysis theory (e.g. students and workers

in other fields). In general, we hope that any reader, including the expert, will

appreciate having the basic theory together with the proofs collected into a

single volume.

In compiling the scattered material in the literature we were often able to

simplify and tidy up the original proofs of the inventors; we hope that it will add

to the value of the book. The same process revealed several natural questions

that have not been touched upon before. We have tried to the best of our ability

to fill in those gaps. Consequently this book contains quite a few new results.

To illustrate the theory we have included examples, mainly playing around

spaces of continuous, analytic, and differentiable (Cn, C∞) K-valued func-

tions. The reader will notice that these themes return in every chapter, connect-

ing them with the newly developed subject. For the reader’s convenience we

include a guide to the examples at the end of the book. Formally, the examples

are independent of the main theory, so the reader can choose to pick his or

her favourites; only occasionally will we use some space to provide a coun-

terexample to a conjecture. We would like to point out that our examples do

not cover all the present-day knowledge of these spaces. For this and related

theories one should consult the following references.

Spaces of continuous functions were studied by e.g. Aguayo, De Grande-De

Kimpe, Katsaras, Martı́nez-Maurica, Navarro and Perez-Garcia ([3], [5], [86],

[87], [113], [114], [115], [120], [122], [123], [124], [149], [176]). Background

on general theory of analytic functions was given by Escassut, [53], Robert,

[190] and Robba and Christol, [188], [189]. The last reference also contains

some locally convex examples and some applications to p-adic differential

equations, as do [35] and [36]. More on locally convex theory of analytic

functions can be found in [68], [78] and [82]. For Cn(C∞)-functions, see

[195] for general theory, and the works of De Grande-De Kimpe, Khrennikov,

Navarro, Schikhof and van Hamme ([70], [83], [165], [206], [207]) for locally

convex aspects. Generalizations (several variables, more abstract settings) were
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xiv Preface

treated by De Smedt ([223], [224], [225]) and by Bertram, Glöckner and Neeb

([28], [61]).

Throughout the book we have provided, for convenience, many cross-

references. This way the reader can have easy access to related results that

have been treated earlier, and a link to developments later on in the book.

The notes at the end of each chapter contain some history, references and

comments. When mentioning results that are not covered by the book no

completeness is pretended.

In the glossary of terms (Appendix A) we explain a few concepts, terminol-

ogy, notations, etc., used freely in the book, but that may be not familiar to all

readers.

In the guide to the examples (Appendix B) we list the most important

examples treated in the book and indicate where their properties can be found.

Finally, we wish to thank the Ministerio de Educación y Ciencia of Spain

(MTM2006-14786), for partially supporting the research concerning new

results that are presented in this book.
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