978-0-521-19154-8 - Design and Analysis of Long-term Ecological Monitoring Studies Edited by Robert A. Gitzen, Joshua J. Millspaugh, Andrew B. Cooper and Daniel S. Licht Index

More information

Index

abundance and density monitoring. See also capture-mark-recapture; indices of abundance counts with perfect detection, 404 distance sampling, 404-405 N-mixture models, 405-406 adaptability and learning. See also adaptive resource management adaptive monitoring sensu Lindenmayer and Likens (2009), 29-32, 71 addressing changes in target population extent, 66-67 building from citizen-science monitoring, 464-465 improving and optimizing operational monitoring, 49-50, 444, 452-458 iterative learning in structural equation modeling, 343 modifying and replacing surveys, 69-71, 492 planning for flexibility in survey designs, 18 planning for potential changes in variance magnitudes, 247 supplementing surveillance monitoring after detecting resource degradation, 495 unplanned uses of data and unexpected discoveries, 58-59, 468, 504, 505 updating models in model-based sampling, 394, 396 adaptive resource management (ARM), 74, 76, 501-502. See also monitoring and management adaptive harvest management of mallards, 93-96 competing predictive models, Bayes' theorem, and learning in ARM, 64, 78-79, 88-90, 91, 94–95 double-loop learning, 79, 81 environmental stochasticity and, 85-87 experiments and learning in ARM, 92-93, 96 integrating surveillance and ARM-focused monitoring, 96-97 monitoring in the ARM context, 57, 79-82

partial controllability and, 77-78, 87-88 partial observability and, 83-85 structural uncertainty, reducing through ARM, 76, 78-79, 80-81, 88-93 structured decision making in ARM, 79 adaptive sampling, 382-384, 387-389 adaptive cluster sampling, 383-384 adaptive stratified sampling, 385, 389 GIS adaptive sampling, 385, 388, 394 performance, adaptive vs. non-adaptive designs, 391-394 simulations to assess sampling designs, 384, 387, 389-391 software for, 389, 395 trend detection and adaptive sampling, 383 allocation of effort and resources. See also trade-offs; stratified sampling (allocation of effort) among alternative monitoring programs, 498-499 among vs. within sample sites, 46, 402 between components of hybrid sampling designs, 368-369 between established and new monitoring programs, 505 for data analysis, 35, 258 analysis (data analysis), consideration of during monitoring design, 14, 26, 29, 32, 35, 175-176, 492 autocorrelation. See correlation autoregressive model, 171, 330 Bayes' Theorem, 89, 91 Bayesian inference, 295. See also BUGS; hierarchical modeling; Markov chain Monte Carlo estimation of variance components, 223-224 incorporating prior data, 464 model selection issues, 440-441 structural equation modeling, 338 threshold modeling, 279-280, 287-288 with missing data, 311-312 Before-After, Control-Impact (BACI) design, 58, 175

Cambridge University Press 978-0-521-19154-8 - Design and Analysis of Long-term Ecological Monitoring Studies Edited by Robert A. Gitzen, Joshua J. Millspaugh, Andrew B. Cooper and Daniel S. Licht Index

More information

554	Index	
	bias, 15, 25, 30. <i>See also</i> frame errors; detectability; measurement error	for public education and engagement, 503 of data for exploratory analysis, 467–468
	bias-variance trade-off, 68–69	volunteer motivation, 464, 465–466
	changes in detection ratio, 262–264	cluster sampling, 112–114, 274–277
	evaluating potential biases affecting trend analyses, 261–265, 469	community-level attributes, monitoring, 400, 401
	identifying and addressing potential sources of	conceptual models, 32, 489
	during survey planning, 15-17	Conditional Autoregressive (CAR) model, 448-4
	sources of bias, 51	conservation and monitoring. See management as
	block designs, 192–195, 429	monitoring; adaptive resource manageme
	BUGS, 430, 441	convenience sampling, 9, 105, 401-402
	capture–mark–recapture estimation, 432, 439, 441–442	correlation. See also variance components (correlation coefficients)
	deviance information criterion (DIC), 440 spatio-temporal modeling, 450	addressing correlations (non-independence) in trend analysis, 471–472
	threshold modeling, 280, 287-288	autocorrelated data and cross-validation, 474
	variance component estimation, 213	autocorrelation effects on Type I error, 451–45
	via R, 213, 287–288, 432	correlation parameters in linear mixed-effects trend model, 158–159
	calibration of alternative methods, 70	design-based inference and spatial correlation,
	CAPTURE (software program), 432	421
	capture-mark-recapture, 406-413	non-independence in clustered (grouped) data,
	assumptions, 406–409	202
	closed populations, 406, 409–410 Cormack–Jolly–Seber model, 412	spatial autocorrelation and occurrence studies, 421–422
	density estimation, 410, 439	spatio-temporal modeling of, 448–449, 451–43
	heterogeneity, 408–409, 410–411, 431, 435	458
	435 hierarchical modeling, 427–429, 430–433, 436, 438, 439–440	cumulative distribution functions (CDFs), 141–1 comparison and hypothesis testing, 322–324 estimation, 313, 316–319
	joint vs. separate modeling of detectability and	management thresholds and CDFs, 314
	abundance, 432, 438–439	management unesholds and CD1 s, 514 measurement error and deconvolution, 319–32
	Lincoln–Petersen method, 193, 409	panel designs, CDF estimation with multi-year
	mis-identification and tag loss, 408	data, 318
	multi-state (multi-strata) models, 413, 415	percentile estimation, 319
	open populations, 406, 411–413, 415–416	<i>R</i> software, CDF estimation and testing, 317–3
	recruitment and reproduction estimation,	322, 323
	414–415 simulations, comparison of hierarchical trend	data management, 491
	models, 436	consideration of during planning, 72
	spatially explicit models, 410, 413, 439	in citizen-science monitoring, 465–467
	chain index analysis method, 301	deconvolution of measurement error, 320–322
	changepoint models. See threshold modeling	density estimation. See abundance and density;
	citizen-science monitoring	capture-mark-recapture: density estimati
	assessing appropriateness of during program	design-based inference, 41, 133, 244. See also
	design, 462-464, 503	Horvitz-Thompson estimator
	data quality, 463-464, 466-467	choosing, vs. model-based inference, 42-43,
	integrating targeted and citizen-science	423–424
	surveillance monitoring, 476	trend analysis constraints, 153
	supervision and coordination, 465	detectability, 63–64, 84, 90, 176, 177, 215, 260–2
	survey design constraints and trade-offs, 64, 464, 468, 472	263–264, 265, 426–427, 438, 458. See al. abundance and density; capture–mark–
	value	recapture; occurrence; indices of abundar
	for designing subsequent studies, 464–465,	and adaptive sampling, 394–395
	468	counts with perfect detection, 404
	for large-scale monitoring, 462	covariates to account for variation, 465

978-0-521-19154-8 - Design and Analysis of Long-term Ecological Monitoring Studies Edited by Robert A. Gitzen, Joshua J. Millspaugh, Andrew B. Cooper and Daniel S. Licht Index

438, 439-440

431

error

factor models, 332

49-50 FRAGSTATS, 365

R function, 118, 122-123

373-374, 490

algorithms, 132-139

analysis in R, 317-319

and revisit (panel) designs, 147

for point resources, 132-138

units, 146, 245

149-150

haphazard sampling, 105

components

data augmentation, 430-431

model selection, 440-441

201-203

Dirichlet tessellation, 142

distance sampling, 404-405

occurrence studies, 416-417

More information

Index 555 hierarchical modeling, 427-429, 430-433, 436, simulation comparison, mark-recapture and trend modeling, 437 importance of considering, 401, 426-427 spatio-temporal trend analysis, 447-452 in citizen-science monitoring, 472 survey design optimization, 453-454 threshold modeling, 296-297 recruitment and reproduction studies, 414, 415 trend analysis, 302, 331-332, 435, 436 within-season heterogeneity, 408-409, 410-411, hockey stick model, 284-285. See also threshold modeling Horvitz-Thompson estimator, 119, 134, 315-316, 317-319, 389 extension to continuous population, 316 domain (subpopulation) analyses, 42-43, 323 dynamical models, 94-95, 443, 448, 458 hybrid monitoring surveillance and targeted monitoring, 96-97 error. See total survey error; bias; variance hybrid survey designs 372 components; sampling error; measurement combining probability and model-based sampling, 362-365 probability sampling plus purposely chosen sites, 64 Forest Inventory and Analysis (FIA) Program, US supplementing surveillance monitoring with Forest Service, 31-32, 33, 37, 43, 45, 46-47, targeted monitoring, 58 imputation, 300. See also missing data inclusion probabilities, 102, 117, 119-120, Gaussian Markov random field, 448-449 315-316. See also probability sampling General Random Samples (GRS), 117-119 second-order, R function, 123-125 indices of abundance analysis methods and missing data, 300-302 Generalized Random Tessellation Stratified (GRTS) design, 101, 116, 117, 118, 131-140, 237, incorporating covariates related to variable detectability, 401, 472 integrated nested Laplace approximations (INLA), 450-451 evaluating spatial balance, 143-145, 146 JAGS, 280, 287-288, 450 judgment sampling, 9, 40-41, 64, 104-105, 128, 491 for linear networks and polygons, 138-139 GRTS with stratified sampling, 140 Kolmogorov-Smirnov statistic, 141 GRTS with unequal probability sampling, 140 learning. See adaptability and learning; adaptive over sample for adding and replacing sample resource management R implementation, 132, 138, 140, 146, 148, local neighborhood variance estimator, 133, 160 reverse hierarchical ordering, 146 machine learning, 471, 474, 475-476 grid sampling. See systematic sampling growth-curve trend model, mixed-effects model vs. management and monitoring, 381-382, 383, structural equation modeling, 332 399-400, 413, 426, 440. See also adaptive resource management ecological thresholds and management, 281 hierarchical modeling. See also variance effective partnerships with managers in monitoring, 493 inadequate monitoring design, management and abundance and detectability, modeling, 427-429, 430-433, 436, 438, 439-440 conservation costs of, 26 integrating monitoring results into natural experimental treatment effects, modeling, 431 resource planning, 494 management thresholds, 314 random effects variance component model, management triggers, 62, 72 state-dependent decisions, 79-80, 499-501

978-0-521-19154-8 - Design and Analysis of Long-term Ecological Monitoring Studies Edited by Robert A. Gitzen, Joshua J. Millspaugh, Andrew B. Cooper and Daniel S. Licht Index

 $\underline{\text{More information}}$

556	Index	
	MARK (software program), 432, 438–439, 440 Markov chain Monte Carlo (MCMC), 450, 453–454 in BUGS, 430, 432, 436	model-based sampling, 41, 362, 366 based on graph-theory model of habitat connectivity, 366–368, 375–377
	mark-recapture. <i>See</i> capture-mark-recapture MaxEnt, software program, 396 maximum entropy modeling, 386, 396	combining with probability sampling, 362–36: modeling, statistical. <i>See</i> statistical modeling models, conceptual, 16. <i>See</i> conceptual models
	measurement error, 260–261, 264. See also detectability	monitoring benefits of, 499–504
	effects and deconvolution in cumulative distribution function (CDF) estimation, 319–322	definitions of, 54, 74 monitoring programs, general design and implementation issues. <i>See also</i> trade-off
	incorporation into variance expressions, 178–182 mechanistic models, 94–95, 443, 448, 458	adaptive resource management as a framework for monitoring design, 81–82
	Microsoft Excel. <i>See</i> spreadsheets, analysis with missing data, 338–340	attributes and measurements, selection of, 36– 81–82, 483–487
	and analysis of abundance indices, 300–302 Bayesian analysis, 311–312	deciding when to end a monitoring program, 4 502
	choosing among strategies for handling, 310–311, 339–340 complete case method (casewise deletion), 303,	effective reporting of results, 492 elements of well-defined objectives, 29 s.m.a.r.t. objectives, 28
	339 imputation methods, 339–340	importance of clearly defined purposes and objectives, 14, 20, 28, 56, 397–399,
	description, 303–306 simulation comparisons, 306–310	483–485 institutionalizing a monitoring program,
	missing at random (MAR), 302, 339 missing completely at random (MCAR), 302, 339	483 monitoring design and whole-problem plannir 23–26
	multiple imputation, 306 non-ignorable non-response (missing not	retrospective vs. prospective focus, 399 statistical thinking and statisticians, key roles of
	completely at random, MNAR), 302–303, 311, 339	5–6, 9–10, 13–14, 20, 23–25 sustainability, 62–63, 507
	structural equation modeling and, 339–340 MLPowSim, 219	value and limitations of trend-focused monitoring, 60–62, 151, 399–400
	MLwiN, 219, 220 model evaluation and selection, 423	Mountford index analysis method, 301 Mplus, 220, 344, 356
	assessing model credibility in adaptive resource management, 88–90 cross-validation, 473–474	multiple scales and attributes, monitoring for, 33 43, 58, 107, 108, 171, 362, 364, 372, 386 419, 489
	hierarchical model selection, 440–441 in structural equation modeling, 337–338,	hierarchical threshold modeling of multiple attributes, 296–297
	341–357 in threshold modeling, 285–287	multi-stage sampling, 108, 109–110, 185, 364 cost functions, 182, 189
	validation, 473–474 model-assisted sampling and inference and hypothesis-driven monitoring, 394,	variance expressions and estimation, 178–182 185–189, 192–193, 198
	396 in trend analysis, 153 incorporating predicted species distribution,	National Park Service, US, Inventory and Monitoring Program, 10, 233–234, 370–2 482–483
	384–385, 387–389, 396 iteratively updating models, 394	commonly selected indicators (attributes) for monitoring, 488
	model inaccuracy, 391–394 model-based inference, 41–42. <i>See also</i> model-based sampling	nested sampling. See multi-stage sampling N-mixture models (spatially replicated counts), 405–406
	choosing, vs. design-based inference, 32, 42–43, 423–424 in demographic monitoring, 422	nonparametric models, 471 non-response due to logistical limitations and los access, 64–65, 113, 146

978-0-521-19154-8 - Design and Analysis of Long-term Ecological Monitoring Studies Edited by Robert A. Gitzen, Joshua J. Millspaugh, Andrew B. Cooper and Daniel S. Licht Index

 $\underline{\text{More information}}$

 64, 254, 262–263, 271, 298, 301, 302 as surveillance monitoring, 58, 59 tred examples, 254–259 objectives. <i>See</i> monitoring programs, general design and implementation issues objectives. <i>See</i> monitoring programs, general design sample units, 421 sample units, 421 effort allocation, 402 integrated monitoring of occurrence and habitat dynamics, 419 spatial autocorrelation, issues in occurrence studies, 421–422 Optimal Design (software program), 219 optimizing survey design, 44, 452–458 design criteria, 452–457, 458 design criteria, 452–457, 176, 197, 440 piot studies, importance of, 45–47, 176, 197, 440 porcession and sample-size examinations, 99 pizer 416 power, precision, and sample-size examinations, 99 protation of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey design, 447, 197–199 power for trend decterion, 161, 165–167, 195–196 quantitative samplen objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey design, 240–2424 		Index 557
 64, 254, 262–263, 271, 298, 301, 302 as surveillance monitoring, 58, 59 model-assisted sampling, 387–389 modeling motorparating coxet, 455–457, 458 modeling porecristic stimation, 319 precevise linear model, 284–285. See also threshold modeling modeling, 192–195 modeling, 192–195 mald design, 192–195 malel design, 392–195 malel design, 392–195 malel design, 592–195 modeling motare of quantitative survey design, 44, 452–458 motare or quantitative survey design, 44, 452–458 motare or quantitative survey design, 47, 197–199 motare of quantitative survey design, 47, 197–199 motare or quantitative survey design, 47, 197–195, 196 quantitative survey design, 240–242 probability appling, 41, 104, 129, 105, 168, 237, 224 modeling, 51, 010 software programs and code for, 49, 169, 196, 217, 197–219, 219, 219, 210, 210, 210, 210, 210, 21		
sampling: convenience sampling: converting and implementation issues observer impacts, 167, 237 occurrence and occurrence dynamics, 400–401, 416–423, 472 design sample units, 421 sampling season, 422 target population, 421 effort allocation, 431 environde effort allocation, 431 environde effort allocation, 431 environde effort allocation, 431 effort allocation, 431 effort allocation, 431 environde effort allocation, 431 environde effort allocation, 431 environde effort allocation, 431 environde effort allocation, 432 environde effort allocation, 431 environde effort allocation, 432 environde effort allocation, 431 environde effort allocation, 431 envir	as surveillance monitoring, 58, 59	equal probability, 102–104, 132–139 model-assisted sampling, 387–389
objectives. <i>See</i> monitoring programs, general design and implementation issues observer impacts, 167, 237 design sampling season, 422 design sample units, 421 sampling season, 422 derived the constraints of the constraint on the constraints of the constraint on the constraint of the constraint on the constraint of the constraint on	trend examples, 254–259	
occurrence and occurrence dynamics, 400–401, 416–423, 472 sample units, 421 sample units, 421 effort allocation, 402 integrated monitoring of occurrence and habitat dynamics, 419 emonitoring of occurrence and habitat dynamics, 419 software program), 219 optimizing survey design, 444, 452–458 design criteria, 452–453, 454, 458 incorporating costs, 455–457, 458 incorporating costs, 456–457, 458 integrated nested Laplace approximations (INLA), 450–451 local neighborhood variance estimator, 131, 168, 318 posterior simulations, 292 second-order inclusion probabilities calculation, 112 ournalitive survey design, 47, 197–199 power for trend detection, 161, 165–167, 195–196 importance of quantitative survey design, 47, 197–199 power for trend detection, 161, 165–167, 195–195 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–244 using simulations to assess performance of alternative survey designs, 240–244 subasis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–244 subasis for examinations, 48 consideration of management decision-making, 8	1	unequal probability, 104, 113, 119, 140, 220, 317, 491. <i>See also</i> probability proportional to size
 416-423, 472 design sample units, 421 sampling season, 422 target population, 421 effort allocation, 402 monitoring at multiple scales, 419 spatial autocorrelation, issues in occurrence studies, 421-422 Optimal Design (software program), 219 optimizing survey design, 444, 452-458 design citrat, 452-453, 454, 458 incorporating costs, 455-457, 458 panel design, 192-195 panel design, 192-195 panel design, 52e revisit design percentile estimation, 319 picexvise linear model, 284-285. See also threshold modeling pilot studies, importance of, 45-47, 176, 197, 440 post-stratification, 111 post-stratification, 111 power, precision, and sample-size examinations, 48 components of, 48-49 importance of quantitative survey design, 47, 197-199 power for trend detection, 161, 165-167, 195-106 quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219-220, 241 using simulations to assess performance of alternative survey designs, 240-244 probability (robabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted sampling software programs and code for, 49, 169, 196, 219-220, 241 using simulations to assess performance of alternative survey designs, 240-244 probability (robabilistic) sampling, 41, 104, 129, 315, 362, 402, 400. See also model-assisted sampling advantages and importance of, 102, 104 advantages and importance of, 102, 104 advantages and importance of, 102, 104 	1 , ,	
sample units, 421 sampling season, 422 target population, 421 effort allocation, 402 integrated monitoring of occurrence and habitat dynamics, 419 monitoring at multiple scales, 419 spatial autocorrelation, issues in occurrence studies, 421–422 Optimal Design (software program), 219 optimizing survey design, 424, 452–458 design criteria, 452–453, 454, 458 incorporating costs, 455–457, 458 precentile estimation, 319 precentile estimation, 319 pricewise linear model, 284–285. <i>See also</i> threshold modeling protectile estimation, 219 optilation growth rate, estimating, 400, 404, 410, 415–416 power, precision, and sample-size examinations, 9, 12–13, 14–15, 17 components of, 48–49 importance of quantitative sample objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of atternative survey designs, 11, 104, 129, 315, 362, 402, 490. <i>See also</i> model-assisted advantages and importance of, 102, 104	· · · · · ·	
sampling season, 422 target population, 421 effort allocation, 402 integrated monitoring of occurrence and habitat dynamics, 419 monitoring at multiple scales, 419 spatial autocorrelation, issues in occurrence studies, 421–422 Optimal Design (software program), 219 optimizing survey design, 444, 452–458 design criteria, 452–453, 454, 458 incorporating costs, 455–457, 458 paired designs, 192–195 panel design, 52–453, 454, 458 incorporating costs, 455–457, 458 paired design, 192–195 pared design, 52–457, 458 paired design, 192–195 parel design, 22–195 parel design, 24–285. See also threshold modeling pitor studies, importance of, 45–47, 176, 197, 440 PINT, 219 post-stratification, 111 power, precision, and sample-size examinations, 9, 12–13, 14–15, 17 components of, 48–49 importance of quantitative survey design, 47, 197–199 power for trend detection, 161, 165–167, 195–196 quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted adaptive cluster sampling, 395 cumulative distribution Functions (CDFs) estimation and testing structural equation modeling (SEM), 344 testing for autocorrelation, 471 threshold modeling, 287 variance component estimation, 168 R packages INLA, 450–451 R2WinBUGS, 213, 138, 140, 149–150, 168, 237, 244, 317–319, 322, 323 WiSP, 49 random sampling. <i>See</i> simple random sampling, 402, 400. <i>See also</i> model-assisted sampling advantages and importance of, 102, 104	design	process models. See mechanistic models
target population, 421 effort allocation, 402 integrated monitoring of occurrence and habitat dynamics, 419 spatial autocorrelation, issues in occurrence studies, 421–422 Optimal Design (software program), 219 optimizing survey design, 444, 452–458 design criteria, 452–453, 454, 458 incorporating costs, 455–457, 458 parel designs, 192–195 panel designs, <i>See</i> revisit design percentile estimation, 319 percetile estimation, 319 percetile estimation, 319 percetile estimation, 319 pilot studies, importance of, 45–47, 176, 197, 440 PINT, 219 population growth rate, estimating, 400, 404, 410, 415–416 post-stratification, 111 power, precision, and sample-size examinations, 9, 12–13, 14–15, 17 components of, 48–49 importance of quantitative survey design, 47, 197–199 power for trend detection, 161, 165–167, 195–196 quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 169, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–2244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. <i>See also</i> model-assisted advantages and importance of, 102, 104		
effort allocation, 402 integrated monitoring of occurrence and habitat dynamics, 419 soptimizing survey design, 421–422 Optimal Design (software program), 219 optimizing survey design, 444, 452–458 design criteria, 452–453, 454, 458 incorporating costs, 455–457, 458 incorporating costs, 456–47, 176, 197, 440 probability costabilities calculation, 120, 123–125 simulations, 49, 248, 433 status estimation, 244, 378. <i>See also R:</i> Cumulative Distribution Functions (CDFs) estimation and testing structural equation modeling (SEM), 344 testing for autocorrelation, 471 threshold modeling, 287 variance component estimation, 168 <i>R</i> packages invertion of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of advantages and importance of, 102, 104	· · ·	general design and implementation issues
integrated monitoring of occurrence and habitat dynamics, 419 monitoring at multiple scales, 419 spatial autocorrelation, issues in occurrence studies, 421–422 Optimal Design (software program), 219 optimizing survey design, 444, 452–458 design criteria, 452–453, 454, 458 incorporating costs, 455–457, 458 design criteria, 452–453, 454, 458 incorporating costs, 455–457, 458 design criteria, 452–453, 454, 458 incorporating costs, 455–457, 458 design criteria, 452–458, 454, 458 incorporating costs, 455–457, 458 design criteria, 452–458, 454, 458 incorporating costs, 455–457, 458 design criteria, 452–458, 4149–150, 317–319, 378 integrated nested Laplace approximations (INLA), 450–451 local neighborhood variance estimator, 133, 168, 318 posterior simulations, 292 second-order inclusion probabilities calculation, 120, 123–125 simulations, 49, 248, 433 status estimation, 244, 378. <i>See also</i> R: Cumulative Distribution Functions (CDFs) estimation and testing structural equation modeling (SEM), 344 testing for autocorrelation, 471 threshold modeling, 287 variance component estimation, 168 <i>R</i> packages INLA, 450–451 R22WinBUGS, 213, 432 rv, 292 segmented, 287 spsurvey, 132, 133, 138, 140, 149–150, 168, 237, 244, 317–319, 322, 323 wiSSF 49 random sampling. <i>See</i> simple random sampling, <i>S</i> 5, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. <i>See also</i> model-assisted advantages and importance of, 102, 104		D
dynamics, 419cumulative distribution functions (CDFs)monitoring at multiple scales, 419setimation and testing, 317–319, 322, 323spatial autocorrelation, issues in occurrencesetimation and testing, 317–319, 322, 323design circlia, 452–453Generalized Random Sample function, 118, 122–123optimain Design (software program), 219Generalized Random Sample function, 118, 122–123optimizing survey design, 444, 452–458(GRTS) design, 132, 138, 140, 148, 149–150, 317–319, 378incorporating costs, 455–457, 458(GRTS) design, 132, 138, 140, 148, 149–150, 317–319, 327, 322, 323paired design, spercentile, estimation, 319integrated nested Laplace approximationspiecewise linear model, 284–285. See also threshold modelingmontance of, 45–47, 176, 197, 440pINT, 219population growth rate, estimating, 400, 404, 410, 415–416sample, eatimation, 400, 404, 410, 415–416power, precision, and sample-size examinations, 9, 12–13, 14–15, 17components of, 48–49components of, 48–49importance of quantitative survey design, 47, 197–199power for trend detection, 161, 165–167, 195–196probability sampling software programs and code for, 49, 169, 196, 219–220, 241software programs and code for, 49, 169, 196, 219–220, 241samsing simulations to assess performance of alternative survey designs, 240–244probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted and mappingadvantages and importance of, 102, 104	· · · · · · · · · · · · · · · · · · ·	
monitoring at multiple scales, 419 spatial autocorrelation, issues in occurrence studies, 421–422 Optimal Design (software program), 219 optimizing survey design, 444, 452–458 design criteria, 452–453, 454, 458 incorporating costs, 455–457, 458 design, <i>See</i> revisit design panel design, <i>See</i> revisit design percentile estimation, 319 piccewise linear model, 284–285. <i>See also</i> threshold modeling pitot studies, importance of, 45–47, 176, 197, 440 PINT, 219 population growth rate, estimating, 400, 404, 410, 415–416 port, 210, 123–125 simulations, 49, 248, 433 status estimation, at8 components of, 48–49 importance of quantitative survey design, 47, 197–199 power for trend detection, 161, 165–167, 195–196 quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alterrative survey design, 41, 104, 129, 315, 362, 402, 490. <i>See also</i> model-assisted advantages and importance of, 102, 104		
studies, 421–422 Optimal Design (software program), 219 optimizing survey design, 444, 452–458 design criteria, 452–453, 454, 458 incorporating costs, 455–457, 458 paired design, 192–195 panel design, <i>See</i> revisit design percentile estimation, 319 picewise linear model, 284–285. <i>See also</i> threshold modeling pilot studies, importance of, 45–47, 176, 197, 440 PINT, 219 population growth rate, estimating, 400, 404, 410, 415–416 post-stratification, 111 post-stratification, 111 power, precision, and sample-size examinations, 9, 12–13, 14–15, 17 components of, 48–49 importance of quantitative survey design, 47, 197–199 power for trend detection, 161, 165–167, 195–196 quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 210–220, 241 using simulations to assess performance of alternative survey designs, 240–244 probability (probabilitic) sampling, 41, 104, 129, 315, 362, 402, 490. <i>See also</i> model-assisted sampling advantages and importance of, 102, 104		
Optimal Design (software program), 219 optimizing survey design, 444, 452–458 design criteria, 452–453, 454, 458 incorporating costs, 455–457, 458 integrated nested Laplace approximations (ILLA), 450–451 incorporating costs, 454–47, 176, 197, 440 PINT, 219 power, precision, and sample-size examinations, 9, 12–13, 14–15, 17 components of, 48–49 importance of quantitative survey design, 47, 197–199 power for trend detection, 161, 165–167, 195–196 quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–244 probability (probabilistic) sampling, 41, 104, 129, 315, 352, 402, 490. <i>See also</i> model-assisted sampling advantages and importance of, 102, 104	spatial autocorrelation, issues in occurrence	1 , , ,
optimizing survey design, 444 , $452-458$ design criteria, $452-453$, 454 , 458 incorporating costs, $455-457$, 458 parel designs, $192-195$ panel design. See revisit design percentile estimation, 319 percentile estimation, 319 protectives linear model, $284-285$. See also threshold modeling pilot studies, importance of, $45-47$, 176 , 197 , 440 PINT, 219 population growth rate, estimating, 400 , 404 , 410 , 415-416 post-stratification, 111 power, precision, and sample-size examinations, 9 , 12-13, $14-15$, $17components of, 48-49importance of quantitative survey design, 47,197-199power for trend detection, 161, 165-167,195-196quantitative sampling objectives, 6, 241as basis for examinations, 48consideration of management decision-making,85$, 91 , $501software programs and code for, 49, 169, 196,219-220$, $241using simulations to assess performance ofalternative survey designs, 240-244probability (probabilitic) sampling, 41, 104, 129,315$, 362 , 402 , 490 . <i>See also</i> model-assisted sampling advantages and importance of, 102 , 104		
design criteria, 452–453, 454, 458 incorporating costs, 455–457, 458 parted designs, 192–195 panel design. <i>See</i> revisit design percentile estimation, 319 piceewise linear model, 284–285. <i>See also</i> threshold modeling pilot studies, importance of, 45–47, 176, 197, 440 PINT, 219 population growth rate, estimating, 400, 404, 410, 415–416 post-stratification, 111 power, precision, and sample-size examinations, 9, 12–13, 14–15, 17 components of, 48–49 importance of quantitative survey design, 47, 197–199 power for trend detection, 161, 165–167, 195–196 quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 169, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. <i>See also</i> model-assisted sampling advantages and importance of, 102, 104		· · · · · · · · · · · · · · · · · · ·
 incorporating costs, 455–457, 458 (INLA), 450–451 local neighborhood variance estimator, 133, 168, 318 paired design. <i>See</i> revisit design percentile estimation, 319 picewise linear model, 284–285. <i>See also</i> threshold modeling pilot studies, importance of, 45–47, 176, 197, 440 PINT, 219 post-stratification, 111 power, precision, and sample-size examinations, 9, 12–13, 14–15, 17 components of, 48–49 importance of quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. <i>See also</i> model-assized sampling advantages and importance of, 102, 104 		
 local neighborhood variance estimator, 133, 168, 318 posterior simulations, 292 second-order inclusion probabilities calculation, 120, 123–125 simulations, 49, 248, 433 status estimation, 244, 378. See also R: Cumulative Distribution Functions (CDFs) estimation and testing power for trach detection, 161, 165–167, 197–199 power for trend detection, 161, 165–167, 195–196 quantitive sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted sampling advantages and importance of, 102, 104 	•	• • • • • •
panel design. See revisit design percentile estimation, 319 piecewise linear model, 284–285. See also threshold modeling pilot studies, importance of, 45–47, 176, 197, 440 PINT, 219 population growth rate, estimating, 400, 404, 410, 415–416 post-stratification, 111 post-stratification, 111 power, precision, and sample-size examinations, 9, 12–13, 14–15, 17 components of, 48–49 importance of quantitative survey design, 47, 197–199 power for trend detection, 161, 165–167, 195–196 quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted sampling advantages and importance of, 102, 104	r	
 percentile estimation, 319 picewise linear model, 284–285. See also threshold modeling pilot studies, importance of, 45–47, 176, 197, 440 pilot studies, importance of, 45–47, 176, 197, 440 population growth rate, estimating, 400, 404, 410, 415–416 post-stratification, 111 power, precision, and sample-size examinations, 9, 12–13, 14–15, 17 components of, 48–49 importance of quantitative survey design, 47, 197–199 power for trend detection, 161, 165–167, 195–196 quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted sampling advantages and importance of, 102, 104 second-order inclusion probabilities calculation, 120, 123–125 simulations, 49, 248, 433 status estimation, 244, 378. See also R: Cumulative Distribution Functions (CDFs) estimation and testing structural equation modeling (SEM), 344 testing for autocorrelation, 471 threshold modeling, 287 variance component estimation, 168 <i>R</i> packages INLA, 450–451 RPWinBUGS, 213, 432 rv, 292 segmented, 287 spurvey, 132, 133, 138, 140, 149–150, 168, 237, 244, 317–319, 322, 323 waspling Random Tessellation Stratified (RTS) design, 131, 162 ratio estimator, 319 recruitment and reproduction, estimating, 413–415 representative sampling, 127–132 and analysis of citizen-science data, 469 non-representative sampling frame: frame 	paired designs, 192-195	
 piecewise linear model, 284–285. See also threshold modeling pilot studies, importance of, 45–47, 176, 197, 440 population growth rate, estimating, 400, 404, 410, 415–416 post-stratification, 111 post-stratification, 111 power, precision, and sample-size examinations, 9, 12–13, 14–15, 17 components of, 48–49 importance of quantitative survey design, 47, 197–199 power for trend detection, 161, 165–167, 195–196 quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also molel-assisted sampling advantages and importance of, 102, 104 	panel design. See revisit design	
modeling pilot studies, importance of, 45–47, 176, 197, 440 PINT, 219 population growth rate, estimating, 400, 404, 410, 415–416 power, precision, and sample-size examinations, 9, 12–13, 14–15, 17 components of, 48–49 importance of quantitative survey design, 47, 197–199 power for trend detection, 161, 165–167, 195–196 quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. <i>See also</i> molel-assisted sampling advantages and importance of, 102, 104		
pilot studies, importance of, 45–47, 176, 197, 440 PINT, 219 population growth rate, estimating, 400, 404, 410, 415–416 power, precision, and sample-size examinations, 9, 12–13, 14–15, 17 components of, 48–49 importance of quantitative survey design, 47, 197–199 power for trend detection, 161, 165–167, 195–196 quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. <i>See also</i> model-assisted sampling advantages and importance of, 102, 104	* ·	
440Cumulative Distribution Functions (CDFs)PINT, 219estimation and testingpopulation growth rate, estimating, 400, 404, 410, 415-416structural equation modeling (SEM), 344post-stratification, 111threshold modeling, 287power, precision, and sample-size examinations, 9, 12-13, 14-15, 17reschold modeling, 287components of, 48-49INLA, 450-451importance of quantitative survey design, 47, 197-199R2WinBUGS, 213, 432power for trend detection, 161, 165-167, 195-196rv, 292power for trend detection, 161, 165-167, 195-196segmented, 287quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501See simple random sampling, probability samplingsoftware programs and code for, 49, 169, 196, 219-220, 241Random Tessellation Stratified (RTS) design, 131, 162using simulations to assess performance of alternative survey designs, 240-244 probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted samplingratio estimator, 319advantages and importance of, 102, 104recruitment and reproduction, estimating, 413-415	•	
PINT, 219estimation and testingpopulation growth rate, estimating, 400, 404, 410, 415-416atsing for autocorrelation, 471 threshold modeling, 287 variance component estimation, 168power, precision, and sample-size examinations, 9, 12-13, 14-15, 17reshold modeling, 287 variance component estimation, 168components of, 48-49INLA, 450-451importance of quantitative survey design, 47, 197-199Rackagespower for trend detection, 161, 165-167, 195-196Regmented, 287 spsurvey, 132, 133, 138, 140, 149-150, 168, 237, 244, 317-319, 322, 323quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501segmented, 287 spsurvey, 132, 133, 138, 140, 149-150, 168, 237, 244, 317-319, 322, 323software programs and code for, 49, 169, 196, 219-220, 241ratio estimator, 319using simulations to assess performance of alternative survey designs, 240-244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted samplingRandom Tessellation Stratified (RTS) design, 131, 162advantages and importance of, 102, 104analysis of citizen-science data, 469 non-representative sample, 64-65, 68-69, 105, 262-263. See also sampling frame: frame		
415-416testing for autocorrelation, 471post-stratification, 111threshold modeling, 287power, precision, and sample-size examinations, 9, 12-13, 14-15, 17resting for autocorrelation, 471components of, 48-49threshold modeling, 287importance of quantitative survey design, 47, 197-199R packagespower for trend detection, 161, 165-167, 195-196R2WinBUGS, 213, 432 rv, 292power for trend detection, 161, 165-167, 195-196segmented, 287 spurvey, 132, 133, 138, 140, 149-150, 168, 237, 244, 317-319, 322, 323quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501WiSP, 49software programs and code for, 49, 169, 196, 219-220, 241random sampling. recruitment and reproduction, estimating, 413-415 representative sampling, 127-132 and analysis of citizen-science data, 469 non-representative sampling, 127-132 and analysis of citizen-science data, 469 non-representative sampling frame: frame	PINT, 219	
post-stratification, 111 power, precision, and sample-size examinations, 9, 12–13, 14–15, 17 components of, 48–49 importance of quantitative survey design, 47, 197–199 power for trend detection, 161, 165–167, 195–196 quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also omodel-assisted sampling advantages and importance of, 102, 104 threshold modeling, 287 variance component estimation, 168 <i>R</i> packages INLA, 450–451 R2WinBUGS, 213, 432 rv, 292 segmented, 287 spurvey, 132, 133, 138, 140, 149–150, 168, 237, 244, 317–319, 322, 323 WiSP, 49 random sampling. <i>See</i> simple random sampling, probability sampling, 41, 104, 129, 315, 362, 402, 490. <i>See also</i> model-assisted sampling advantages and importance of, 102, 104	population growth rate, estimating, 400, 404, 410,	structural equation modeling (SEM), 344
 power, precision, and sample-size examinations, 9, 12–13, 14–15, 17 components of, 48–49 importance of quantitative survey design, 47, 197–199 power for trend detection, 161, 165–167, 195–196 quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted sampling advantages and importance of, 102, 104 variance component estimation, 168 <i>R</i> packages INLA, 450–451 R2WinBUGS, 213, 432 rv, 292 segmented, 287 spurvey, 132, 133, 138, 140, 149–150, 168, 237, 244, 317–319, 322, 323 WiSP, 49 random sampling. See simple random sampling, probability sampling Random Tessellation Stratified (RTS) design, 131, 162 ratio estimator, 319 recruitment and reproduction, estimating, 413–415 representative sampling, 127–132 advantages and importance of, 102, 104 		6
12–13, 14–15, 17R packagescomponents of, 48–49INLA, 450–451importance of quantitative survey design, 47, 197–199R2WinBUGS, 213, 432 rv, 292power for trend detection, 161, 165–167, 195–196segmented, 287 spurvey, 132, 133, 138, 140, 149–150, 168, 237, 244, 317–319, 322, 323quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501WiSP, 49software programs and code for, 49, 169, 196, 219–220, 241random sampling. probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted samplingRandom Tessellation Stratified (RTS) design, 131, 162advantages and importance of, 102, 104analysis of citizen-science data, 469 non-representative sampling frame: frame	post-stratification, 111	
components of, 48–49INLA, 450–451importance of quantitative survey design, 47, 197–199INLA, 450–451power for trend detection, 161, 165–167, 195–196rv, 292quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501segmented, 287 spurvey, 132, 133, 138, 140, 149–150, 168, 237, 244, 317–319, 322, 323software programs and code for, 49, 169, 196, 219–220, 241random sampling. probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted samplingRandom Tessellation Stratified (RTS) design, 131, 162advantages and importance of, 102, 104analysis of citizen-science data, 469 non-representative sample, 64–65, 68–69, 105, 262–263. See also sampling frame: frame		
 importance of quantitative survey design, 47, 197–199 power for trend detection, 161, 165–167, 195–196 quantitative sampling objectives, 6, 241 as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted sampling advantages and importance of, 102, 104 Random Tessellation Stratified (RTS) design, 131, 162 ratio estimator, 319 recruitment and reproduction, estimating, 413–415 representative sampling, 127–132 and analysis of citizen-science data, 469 non-representative sample, 64–65, 68–69, 105, 262–263. See also sampling frame: frame 		
197–199rv, 292power for trend detection, 161, 165–167, 195–196segmented, 287quantitative sampling objectives, 6, 241 as basis for examinations, 48244, 317–319, 322, 323consideration of management decision-making, 85, 91, 501WiSP, 49software programs and code for, 49, 169, 196, 219–220, 241random sampling. probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted samplingravantages and importance of, 102, 104		
195–196spsurvey, 132, 133, 138, 140, 149–150, 168, 237,quantitative sampling objectives, 6, 241as basis for examinations, 48as basis for examinations, 48244, 317–319, 322, 323consideration of management decision-making, 85, 91, 501WiSP, 49software programs and code for, 49, 169, 196, 219–220, 241random sampling.using simulations to assess performance of alternative survey designs, 240–244ratio estimator, 319probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted samplingratio estimator, 319advantages and importance of, 102, 104ratic ease also sampling frame: frame		
quantitative sampling objectives, 6, 241244, 317–319, 322, 323as basis for examinations, 48244, 317–319, 322, 323consideration of management decision-making, 85, 91, 501wiSP, 49software programs and code for, 49, 169, 196, 219–220, 241random sampling. See simple random sampling, probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted samplingRandom Tessellation Stratified (RTS) design, 131, 162advantages and importance of, 102, 104advantages and importance of, 102, 104advantages and importance of, 102, 104	power for trend detection, 161, 165-167,	segmented, 287
as basis for examinations, 48 consideration of management decision-making, 85, 91, 501 software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted sampling advantages and importance of, 102, 104 WiSP, 49 random sampling. See simple random sampling, probability sampling. WiSP, 49 random sampling. See simple random sampling, random sampling. See simple random sampling, probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted sampling advantages and importance of, 102, 104		
consideration of management decision-making, 85, 91, 501random sampling. See simple random sampling, probability samplingsoftware programs and code for, 49, 169, 196, 219–220, 241random Tessellation Stratified (RTS) design, 131, 162using simulations to assess performance of alternative survey designs, 240–244ratio estimator, 319 recruitment and reproduction, estimating, 413–415 representative sampling, 127–132 and analysis of citizen-science data, 469 non-representative sample, 64–65, 68–69, 105, 262–263. See also sampling frame: frame		
85, 91, 501probability samplingsoftware programs and code for, 49, 169, 196, 219–220, 241probability samplingusing simulations to assess performance of alternative survey designs, 240–244ratio estimator, 319probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted samplingratio estimator, 319advantages and importance of, 102, 104non-representative sampling frame:		
software programs and code for, 49, 169, 196, 219–220, 241 using simulations to assess performance of alternative survey designs, 240–244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted sampling advantages and importance of, 102, 104 Random Tessellation Stratified (RTS) design, 131, 162 ratio estimator, 319 recruitment and reproduction, estimating, 413–415 representative sampling, 127–132 and analysis of citizen-science data, 469 non-representative sample, 64–65, 68–69, 105, 262–263. See also sampling frame: frame		
using simulations to assess performance of alternative survey designs, 240–244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted sampling advantages and importance of, 102, 104 retruitment and reproduction, estimating, 413–415 representative sampling, 127–132 and analysis of citizen-science data, 469 non-representative sample, 64–65, 68–69, 105, 262–263. See also sampling frame: frame	software programs and code for, 49, 169, 196,	Random Tessellation Stratified (RTS) design, 131,
alternative survey designs, 240–244 probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted sampling advantages and importance of, 102, 104recruitment and reproduction, estimating, 413–415 representative sampling, 127–132 and analysis of citizen-science data, 469 non-representative sample, 64–65, 68–69, 105, 262–263. See also sampling frame:		
probability (probabilistic) sampling, 41, 104, 129, 315, 362, 402, 490. See also model-assisted sampling advantages and importance of, 102, 104representative sampling, 127–132 and analysis of citizen-science data, 469 non-representative sample, 64–65, 68–69, 105, 262–263. See also sampling frame: frame		
315, 362, 402, 490. See also model-assisted sampling advantages and importance of, 102, 104and analysis of citizen-science data, 469 non-representative sample, 64–65, 68–69, 105, 262–263. See also sampling frame: frame	probability (probabilistic) sampling, 41, 104, 129,	· · · ·
advantages and importance of, 102, 104 262–263. <i>See also</i> sampling frame: frame		and analysis of citizen-science data, 469
	1 6	
and design-based interence, 41 error	•	
	and design-based inference, 41	error

Cambridge University Press 978-0-521-19154-8 - Design and Analysis of Long-term Ecological Monitoring Studies Edited by Robert A. Gitzen, Joshua J. Millspaugh, Andrew B. Cooper and Daniel S. Licht Index

More information

558	Index	
	representative sampling (cont.)	MIXED, 206, 239
	representative sample vs. representative sampling process, 129	power calculation, 169 trend analysis, 167, 239
	spatial balance and representativeness, 130–132, 141	variance components estimation, 167–169, 213 239
	response (measurement) design, 45-47	segmented regression. See piecewise linear mode
	index window, 152, 422 sample unit size and shape, 45	selection bias, 128, 260 semi-parametric models, 469–471
	revisit design, 44–45, 154–156, 491	simple random sampling, 109, 119, 160
	always revisit (pure panel) design, 154	comparison, vs. stratified and adaptive samplin
	analysis and power examinations for panel	391–394
	designs, linear mixed-effects model	evaluating spatial balance, 143–145, 146
	framework, 156-160, 165-167, 170	over sample for adding and replacing sample
	and spatial balance, 147	units, 146
	augmented serially alternating panel designs, 156	simulations
	balancing trend-detection and status-estimation objectives, 44, 165–167	assessing performance of alternative survey designs, 240–244
	connected vs. unconnected designs, 156	assessing statistical performance of hierarchica
	cumulative distribution function estimation with	mark-recapture trend models, 436
	panel designs, 318	assessing statistical performance of variance
	effect of missed visits on power, 170	components estimators, 203-204
	in demographic monitoring, 423	comparing adaptive and conventional sampling
	never revisit design, 154	designs, 384, 389-391
	rotating panel designs, 154 effect of temporal correlation on optimal	comparison of missing-data imputation method 306–310
	rotation, 182–183	evaluating spatial balance of sampling designs,
	serially alternating panel designs, 45, 156	143–145, 146
	split-panel designs, 235, 237 route regression, 301–302	simulation approach, estimating variance components on inverse-link (measuremen
	Č, ,	scale, 224–227
	sample (sampling) frame, 39, 40, 234. See also target population	system simulations to predict future variability 234–235, 237–238
	frame errors, 39–40, 66–68, 259–260, 264	utillity for survey-design planning, 229
	due to changes in extent and phenology of	small area estimation, 43
	target population, 40, 44	SMART (multi-attribute weighting) ranking of
	list frame, 368	sampling designs, 391
	SAMPLE (software program), 389	software. See also R; SAS; and other software
	sample unit, 102	program names
	defining in occurrence monitoring, 421	and accessibility of methods, 277, 441
	sampling design, 37, 38–44, 101, 401–402. See also	for survey-design simulations, 247–248
	representative sampling; survey design; and	online data entry system, 467
	individual sampling methods	spatial balance (coverage), 114. See also
	desired attributes for monitoring designs,	Generalized Random Tessellation Stratific
	106–107, 114	(GRTS) design
	for rare and clustered species, 381, 391, 394. See	and revisit (panel) designs, 147
	also adaptive sampling	evaluating, 143–145, 146
	inadequate designs, potential causes of, 7–10	evaluation metrics, 141–143
	over sample for adding and replacing sample	geographic, 148
	units, 146	simple random sampling, 143–145, 146
	scientific (probability sampling) vs. unscientific	through representative sampling, 130–132, 141
	designs, 102–105	with dynamic sample-size adjustments/ over
	spatially explicit designs, 127	sample, 145–146
	sampling distribution, 25	with frame errors, site inaccessibility and
	sampling error, 51, 278	uncertain feasible sample size, 116,
	SAS	120–121

978-0-521-19154-8 - Design and Analysis of Long-term Ecological Monitoring Studies Edited by Robert A. Gitzen, Joshua J. Millspaugh, Andrew B. Cooper and Daniel S. Licht Index

More information

Index	559
IIIUUA	000

spreadsheets, analysis with, 272-273, 275-277 Stata, 220 statistical modeling. See also hierarchical modeling; model evaluation and selection; structural equation modeling; trends and temporal changes Bayesian estimation, 223-224 choosing among parametric, semi-parametric, and nonparametric models, 469-471 dynamical process vs. descriptive models, 272, 443-444 generalized additive models, 269-270, 470 generalized linear and generalized linear mixed models, 210-211, 217, 268-269, 301-302, 430, 431, 448 hierarchical vs. two-step analysis, 427-428 linear mixed-effects model framework for trend analysis, 156-160 linear models, 267 maximum likelihood estimation, 222-223 mixed effects models, overview, 270-271 model specification, 265-267, 280 multi-model inference, 470 parameter (model) identifiability, 336-337 scientific model formulation and statistical inference in threshold modeling, 282-283, 294-295 status estimation, 152, 313, 315-316 abundance indices and missing data, 300-302 cumulative distribution function (CDF), 316-319, 320-322 step function model, 284. See also threshold modeling stratified sampling, 108, 110, 111-112, 113, 129-130, 140, 260, 318, 381, 445-446, 447 adaptive stratified sampling, 385, 389 allocation of effort, 111, 130 and management decision models, 85-86 comparison, vs. simple random and adaptive sampling, 391-394 example analysis, 274-277 modeling spatial correlation among strata, 448-449, 451 stratifying based on model predictions, 385, 388-389 stratifying on non-permanent features, 65-66, 112, 491 structural equation modeling (SEM) assessing model fit, 337-338, 341-342, 346-347, 348, 354 autoregressive cross-lagged model, 331 autoregressive latent trajectory model, 335, 354 autoregressive model, 330, 354

Bayesian (predictive probabilistic) networks and SEM, 357 Bayesian approach, 338 causal and theory-driven SEM, 325, 329, 341, 343-357 graphical representation, 326-328 latent trajectory model, 331, 332-333, 335, 354 latent variable framework, 328-329 learning to apply, 341, 357 maximum likelihood estimation, 338 missing data, 339-340 full information maximum likelihood approach, 340 model comparison and selection, 341-343 modeling nonlinear trajectories, 333-334 observed-variable models, 326-328 of temporal changes, 329-336, 343-357 parameter (model) identifiability, 336-337 software for, 344 structured decision-making and monitoring, 57. See also adaptive resource management subpopulations, estimates for, 42-43 surveillance monitoring, 97, 364-365, 399-400 benefits and limitations of, 58-60, 82 survey design, 38, 489-491. See also sampling design; revisit design; response design documenting, 17-18 evaluating designs with simulations, 384, 387, 389-391 importance of statistical planning, 37-38 incorporating costs, 455-457 optimizing, 444, 452-458 survey design (sampling) weights, 315, 316, 319 recommended maximum range, 318 unequal weights and variance-component estimation, 220 survival estimation band recovery models, 412 capture-mark-recapture, 412-413 systematic sampling, 43, 114-116, 119, 131, 420 target population (target universe), 38-40, 102, 151, 234.315 biological (resource) vs. statistical, 38-39, 421 changes in extent, location, and phenology, 44, 66-67, 421 in occurrence studies, 421 types of spatial populations, 126, 127, 143, 313-315 targeted monitoring, 57, 82, 394. See also adaptive resource management thresholds and threshold (changepoint) modeling alternative threshold models, 279 distinguishing threshold vs. smooth changes, 286 general model, 283, 285 hierarchical modeling, 296-297

Cambridge University Press 978-0-521-19154-8 - Design and Analysis of Long-term Ecological Monitoring Studies Edited by Robert A. Gitzen, Joshua J. Millspaugh, Andrew B. Cooper and Daniel S. Licht Index

More information

560	Index	
	thresholds and threshold modeling (<i>cont.</i>) management applications of threshold modeling, 281	unequal probability sampling. <i>See</i> probability sampling
	management thresholds, 314	variability, sources of
	maximum likelihood estimation, 287 model evaluation and selection, 285–287 nonparametric deviance reduction (CART) approach, 288 overview of alternative models, 279–280, 285	defining during survey design, 176–178 estimates of variance components for stream physical variables in Oregon USA, 162–16 relative impacts on power for trend detection, 165–167
	total survey error, 46, 51	variance components, 201, 320
	trade-offs, 75. See also allocation of effort and	ANOVA estimation, 167–169, 187, 221–222
	resources	Bayesian estimation, 223–224
	balancing trend-detection and status-estimation	correlation coefficients
	objectives, 44, 165–167	intraclass correlation coefficients, 194, 208
	competing management objectives, 77 detectability vs. indices of abundance, 63–64	measurement error and, 184–185 distributional assumptions and estimation, 168,
	investing in monitoring vs. management actions,	208
	502	estimation of variance components on
	long-term vs. effectiveness monitoring, 494-496	inverse-link (measurement) scale
	methodological improvements vs. data	latent variable approach, 225
	consistency, 492	simulation approach, 224–227
	quality vs. quantity, 403, 462, 468	estimation with small sample sizes, 204, 207
	structured optimization of monitoring effort, costs	identification and estimation based on
	vs. information value, 93 with citizen-science monitoring, 462, 464, 468	fundamental variance expressions, 178–18 linear model framework for defining, 156–160,
	trends and temporal changes, 152–153	167–169, 176–177, 198, 201–203, 204
	autoregressive model, 171, 330	maximum likelihood estimation, 222–223
	consideration of during program and survey	restricted (residual) maximum likelihood
	design, 33–35	(REML) estimation, 223, 239
	defining and describing trend, 60-62, 254-259	SAS code for estimation, 167–169
	elapsed years vs. power and precision, 169, 437	scientific and management uses of, 200
	exponential model, 256	sources of information for assessing, 48,
	hierarchical modeling, 302, 331–332, 436, 447–452	153–154, 197 statistical properties of estimators
	incorporating covariates and hypothesized change	binomially distributed/categorical data,
	mechanisms into analyses of, 34, 169,	211–213, 214–215
	334–335	count data, 217–218
	key literature references, 154, 253-254	normally distributed/continuous data,
	linear mixed-effects model framework for trend	204–209
	analysis, 156–160, 171	uncertainty in estimates of, 16, 191, 207
	log-linear model, 301–302, 435, 448	using system simulations to predict future
	modeling interacting trajectories, 331 modeling nonlinear trajectories, 333–334	variability, 234–235, 237–238 variance partition components (VPCs), 208–20
	power for trend detection, 161, 165–167,	variance expressions
	195–196	covariance in stages, 183
	route regression, 301-302	general expression, variance in stages, 178, 179
	SAS linear model code, 167	180
	simulations, hierarchical mark-recapture trend	log-normal data, 196
	modeling, 436	trend parameter in linear model framework, 157
	structural equation modeling (SEM) of, 329–336,	159, 160
	343–357 threshold modeling, 296–297	volunteer monitoring. See citizen-science monitoring
	variability in trends across sites, 157, 159–160,	monitoring
	165, 170–171	waterfowl, North American monitoring, 61-62,
	two-stage sampling. See multi-stage sampling	93–94, 96, 444–446
	Type I and Type II errors, 30	WinBUGS. See BUGS