Introduction to Medical Imaging Physics, Engineering and Clinical Applications

Covering the basics of X-rays, CT, PET, nuclear medicine, ultrasound and MRI, this textbook provides senior undergraduate and beginning graduate students with a broad introduction to medical imaging. Over 130 end-of-chapter exercises are included, in addition to solved example problems, which enable students to master the theory as well as providing them with the tools needed to solve more difficult problems. The basic theory, instrumentation and state-of-the-art techniques and applications are covered, bringing students immediately up-to-date with recent developments, such as combined computed tomography/positron emission tomography, multi-slice CT, four-dimensional ultrasound and parallel imaging MR technology. Clinical examples provide practical applications of physics and engineering knowledge to medicine. Finally, helpful references to specialized texts, recent review articles and relevant scientific journals are provided at the end of each chapter, making this an ideal textbook for a one-semester course in medical imaging.

Nadine Barrie Smith is a faculty member in the Bioengineering Department and the Graduate Program in Acoustics at Pennsylvania State University. She also holds a visiting faculty position at the Leiden University Medical Center. She is a Senior Member of the IEEE, and of the American Institute of Ultrasound in Medicine where she is on both the Bioeffects and Technical Standards Committees. Her current research involves ultrasound transducer design, ultrasound imaging and therapeutic applications of ultrasound. She has taught undergraduate medical imaging and graduate ultrasound imaging courses for the past 10 years.

Andrew Webb is Professor of Radiology at the Leiden University Medical Center, and Director of the C.J. Gorter High Field Magnetic Resonance Imaging Center. He is a Senior Member of the IEEE, and a Fellow of the American Institute of Medical and Biological Engineering. His research involves many areas of high field magnetic resonance imaging. He has taught medical imaging classes for graduates and undergraduates both nationally and internationally for the past 15 years.

Cambridge Texts in Biomedical Engineering

Series Editors W. Mark Saltzman, Yale University Shu Chien, University of California, San Diego

Series Advisors William Hendee, Medical College of Wisconsin Roger Kamm, Massachusetts Institute of Technology Robert Malkin, Duke University Alison Noble, Oxford University Bernhard Palsson, University of California, San Diego Nicholas Peppas, University of Texas at Austin Michael Sefton, University of Toronto George Truskey, Duke University Cheng Zhu, Georgia Institute of Technology

Cambridge Texts in Biomedical Engineering provides a forum for high-quality accessible textbooks targeted at undergraduate and graduate courses in biomedical engineering. It covers a broad range of biomedical engineering topics from introductory texts to advanced topics including, but not limited to, biomechanics, physiology, biomedical instrumentation, imaging, signals and systems, cell engineering, and bioinformatics. The series blends theory and practice, aimed primarily at biomedical engineering students, it also suits broader courses in engineering, the life sciences and medicine.

Cambridge University Press 978-0-521-19065-7 - Introduction to Medical Imaging: Physics, Engineering and Clinical Applications Nadine Barrie Smith and Andrew Webb Frontmatter <u>More information</u>

Introduction to Medical Imaging

Physics, Engineering and Clinical Applications

Nadine Barrie Smith Pennsylvania State University

Andrew Webb Leiden University Medical Center

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge. It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521190657

© N. Smith and A. Webb 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011 6th printing 2015

Printed in the United Kingdom by TJ International Ltd, Padstow, Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Webb, Andrew (Andrew G.)
Introduction to medical imaging : physics, engineering, and clinical applications / Andrew Webb, Nadine Smith.
p. ; cm.
Includes bibliographical references and index.
ISBN 978-0-521-19065-7 (hardback)
1. Diagnostic imaging. 2. Medical physics. I. Smith, Nadine, 1962–2010.
II. Title.
[DNLM: 1. Diagnostic Imaging. WN 180]

RC78.7.D53.W43 2011 616.07'54–dc22 2010033027

ISBN 978-0-521-19065-7 Hardback

Additional resources for this publication at www.cambridge.org/9780521190657

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. "This is an excellently prepared textbook for a senior/first year graduate level course. It explains physical concepts in an easily understandable manner. In addition, a problem set is included after each chapter. Very few books on the market today have this choice. I would definitely use it for teaching a medical imaging class at USC." *K. Kirk Shung, University of Southern California*

"I have anxiously anticipated the release of this book and will use it with both students and trainees."

Michael B. Smith, Novartis Institutes for Biomedical Research

"An excellent and approachable text for both undergraduate and graduate student." *Richard Magin, University of Illinois at Chicago*

Cambridge University Press 978-0-521-19065-7 - Introduction to Medical Imaging: Physics, Engineering and Clinical Applications Nadine Barrie Smith and Andrew Webb Frontmatter More information

Contents

1			age characteristics, data acquisition reconstruction	1
	1.1	Introdu		1
	1.2	Specificity, sensitivity and the receiver operating		2
		characteristic (ROC) curve		
	1.3	Spatial resolution		5
		1.3.1	Spatial frequencies	5
		1.3.2	The line spread function	6
		1.3.3	The point spread function.	7
		1.3.4	The modulation transfer function	8
	1.4	Signal	-to-noise ratio	10
	1.5	Contrast-to-noise ratio Image filtering		12
	1.6			12
	1.7	Data acquisition: analogue-to-digital converters		15
		1.7.1		16
		1.7.2	Sampling frequency and bandwidth	18
		1.7.3	Digital oversampling	19
	1.8	Image	artifacts	20
	1.9	Fourier transforms		20
		1.9.1	Fourier transformation of time- and spatial frequency-domain signals	21
		1.9.2	Useful properties of the Fourier transform	22
	1.10	Backp	rojection, sinograms and filtered backprojection	24
		1.10.1	Backprojection	26
		1.10.2	Sinograms	27
		1.10.3	Filtered backprojection	27
	Exerc	ises		30
2	X-ray	/ plana	r radiography and computed tomography	34
	2.1	Introdu	uction	34
	2.2	The X-ray tube		
	2.3	The X	-ray energy spectrum	40

viii	Contents		
	2.4		10
	2.4	Interactions of X-rays with the body2.4.1Photoelectric attenuation	42
			42
	2.5	2.4.2 Compton scattering	43
	2.5	X-ray linear and mass attenuation coefficients	45 47
	2.6	Instrumentation for planar radiography	
		2.6.1 Collimators2.6.2 Anti-scatter grids	48 48
	27	e	48 50
	2.7	X-ray detectors 2.7.1 Computed radiography	50 50
			50 52
	2.8	6 619	52 54
	2.0	Quantitative characteristics of planar X-ray images 2.8.1 Signal-to-noise	54 54
		e	57
		2.8.2 Spatial resolution2.8.3 Contrast-to-noise	58
	2.0		
	2.9	X-ray contrast agents	59 59
		2.9.1 Contrast agents for the GI tract2.9.2 Iodine-based contrast agents	
	2 10		60 61
	2.10	Specialized X-ray imaging techniques	61
		2.10.1 Digital subtraction angiography	62
		2.10.2 Digital mammography	63
	2 1 1	2.10.3 Digital fluoroscopy	64
	2.11	Clinical applications of planar X-ray imaging	66
	2.12	Computed tomography	67
		2.12.1 Spiral/helical CT	67 68
	2.12	2.12.2 Multi-slice spiral CT Instrumentation for CT	
	2.13		68 69
		2.13.1 Instrumentation development for helical CT	
	2.14	2.13.2 Detectors for multi-slice CT	70
	2.14	Image reconstruction in CT	71 71
		2.14.1 Filtered backprojection techniques2.14.2 Fan beam reconstructions	71
			73
		2.14.3 Reconstruction of helical CT data2.14.4 Reconstruction of multi-slice helical CT scans	73 74
		2.14.4 Reconstruction of multi-slice helical CT scans2.14.5 Pre-processing data corrections	74 74
	2.15	1 0	74 75
	2.15 2.16	Dual-source and dual-energy CT	73 76
	2.10	Digital X-ray tomosynthesis Radiation dose	70
	2.17	Clinical applications of CT	80
	2.10	2.18.1 Cerebral scans	
			80 81
		5	81 81
		6 6	
	Errore	2.18.4 Cardiac imaging	82 83
	Exerc	1808	83

	lear medicine: Planar scintigraphy, SPECT PET/CT	89
3.1	Introduction	89
3.2	Radioactivity and radiotracer half-life	91
3.3	Properties of radiotracers for nuclear medicine	92
3.4	The technetium generator	93
3.5	The distribution of technetium-based radiotracers	96
	within the body	20
3.6	The gamma camera	97
	3.6.1 The collimator	97
	3.6.2 The detector scintillation crystal and coupled photomultiplier tubes	100
	3.6.3 The Anger position network and pulse height analyzer	103
	3.6.4 Instrumental dead time	106
3.7	Image characteristics	108
3.8	Clinical applications of planar scintigraphy	109
3.9	Single photon emission computed tomography (SPECT)	110
3.10	Data processing in SPECT	112
	3.10.1 Scatter correction	112
	3.10.2 Attenuation correction	114
	3.10.3 Image reconstruction	115
3.11	SPECT/CT	116
3.12	Clinical applications of SPECT and SPECT/CT	117
	3.12.1 Myocardial perfusion	117
	3.12.2 Brain SPECT and SPECT/CT	120
3.13	Positron emission tomography (PET)	121
3.14	Radiotracers used for PET/CT	123
3.15	Instrumentation for PET/CT	124
	3.15.1 Scintillation crystals	125
	3.15.2 Photomultiplier tubes and pulse height analyzer	127
	3.15.3 Annihilation coincidence detection	127
3.16	Two-dimensional and three-dimensional PET imaging	129
3.17		130
3.18	1 0	131
	3.18.1 Attenuation correction	131
	3.18.2 Corrections for accidental and multiple coincidences	131
	3.18.3 Corrections for scattered coincidences	133
	3.18.4 Corrections for dead time	134
3.19	Image characteristics	134
3.20	Time-of-flight PET	135
3.21	Clinical applications of PET/CT	137
	3.21.1 Whole-body PET/CT scanning	137

x	Со	ontents			
			3.21.2	PET/CT applications in the brain	137
			3.21.3	Cardiac PET/CT studies	139
		Exerc	rises		139
	4	Ultra	sound	imaging	145
		4.1	Introdu	iction	145
		4.2	Wave 1	propagation and characteristic acoustic impedance	146
		4.3	Wave 1	reflection, refraction and scattering in tissue	149
			4.3.1	Reflection, transmission and refraction at tissue boundaries	149
			4.3.2	Scattering by small structures	152
		4.4	-	tion and total attenuation of ultrasound in tissue	153
			4.4.1		154
			4.4.2	Attenuation coefficients	155
		4.5	Instrun	nentation	156
		4.6	Single	element ultrasound transducers	157
			4.6.1	Transducer bandwidth	159
			4.6.2	Beam geometry and lateral resolution	161
			4.6.3	Axial resolution	163
			4.6.4	Transducer focusing	163
		4.7	Transd	ucer arrays	165
			4.7.1	Linear arrays	166
			4.7.2	Phased arrays	167
			4.7.3	Beam-forming and steering via pulse transmission	168
				for phased arrays	
			4.7.4	Analogue and digital receiver beam-forming	171
				for phased arrays	
			4.7.5	Time-gain compensation	172
			4.7.6	Multi-dimensional arrays	173
			4.7.7	Annular arrays	174
		4.8	Clinica	l diagnostic scanning modes	175
			4.8.1	A-mode scanning: ophthalmic pachymetry	175
			4.8.2	M-mode echocardiography	175
			4.8.3	Two-dimensional B-mode scanning	176
			4.8.4	Compound scanning	177
		4.9	-	characteristics	178
			4.9.1	Signal-to-noise	178
			4.9.2	Spatial resolution	178
			4.9.3	Contrast-to-noise	179
		4.10		er ultrasound for blood flow measurements	179
			4.10.1	••	181
			4.10.2	Duplex and triplex image acquisition	182

xi	Conte	ents		
			4.10.3 Aliasing in pulsed wave Doppler imaging	184
			4.10.4 Power Doppler	186
			4.10.5 Continuous-wave Doppler measurements	186
		4.11	Ultrasound contrast agents	187
			4.11.1 Microbubbles	187
			4.11.2 Harmonic and pulse inversion imaging	190
		4.12	Safety guidelines in ultrasound imaging	191
		4.13	Clinical applications of ultrasound	193
			4.13.1 Obstetrics and gynaecology	193
			4.13.2 Breast imaging	194
			4.13.3 Musculoskeletal structure	194
			4.13.4 Echocardiography	195
		4.14	Artifacts in ultrasound imaging	196
		Exerc	cises	197
	5	Magı	netic resonance imaging (MRI)	204
		5.1	Introduction	204
		5.2	Effects of a strong magnetic field on protons in the body	205
			5.2.1 Proton energy levels	206
			5.2.2 Classical precession	209
		5.3	Effects of a radiofrequency pulse on magnetization	211
			5.3.1 Creation of transverse magnetization	212
		5.4	Faraday induction: the basis of MR signal detection	213
			5.4.1 MR signal intensity	214
			5.4.2 The rotating reference frame	214
		5.5	T_1 and T_2 relaxation times	215
		5.6	Signals from lipid	219
		5.7	The free induction decay	220
		5.8	Magnetic resonance imaging	221
		5.9	Image acquisition	223
			5.9.1 Slice selection	223
			5.9.2 Phase encoding	226
			5.9.3 Frequency encoding	228
		5.10	The k-space formalism and image reconstruction	229
		5.11	Multiple-slice imaging	231
		5.12	Basic imaging sequences	233
			5.12.1 Multi-slice gradient echo sequences	233
			5.12.2 Spin echo sequences	234
			5.12.3 Three-dimensional imaging sequences	237
			Tissue relaxation times	239
		5.14	MRI instrumentation	241
			5.14.1 Superconducting magnet design	241

xii	Contents

	5 1 4 2	Magnetic field gradient coils	244	
		Radiofrequency coils	244	
		1 0		
- 1-		Receiver design	250	
		imaging using coil arrays	252	
5.16		aging sequences	254	
	5.16.1	Echo planar imaging	255	
	5.16.2	Turbo spin echo sequences	256	
5.17	Magnet	tic resonance angiography	257	
5.18	Functio	nal MRI	259	
5.19	MRI co	ontrast agents	261	
	5.19.1	Positive contrast agents	261	
	5.19.2	Negative contrast agents	263	
5.20	Image of	characteristics	264	
	5.20.1	Signal-to-noise	264	
	5.20.2	Spatial resolution	265	
	5.20.3	Contrast-to-noise	266	
5.21	Safety	considerations – specific absorption rate (SAR)	267	
5.22	Lipid suppression techniques			
5.23	Clinica	l applications	268	
	5.23.1	Neurological applications	268	
	5.23.2	Body applications	269	
	5.23.3	Musculoskeletal applications	270	
	5.23.4	Cardiology applications	271	
Exerc			273	

Index

283