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Introduction to turbulence

Fully developed turbulence is the notion of the general or universal behavior in
any physical situation of a violent fluid flow, be it a dust devil or a cyclone in
the atmosphere, the water flow in a white-water river, the rapid mixing of the
cream and the coffee when stirring in a coffee cup, or perhaps even the flow in
gigantic interstellar gas clouds. It is generally believed that the developments of
these different phenomena are describable through the Navier–Stokes equation
with suitable initial or boundary conditions. The governing equation has been
known for almost two centuries, and a lot of progress has been achieved within
practical engineering in fields like aerodynamics, hydrology, and weather forecast-
ing with the ability to perform extensive numerical calculations on computers.
However, there are still fundamental questions concerning the nature of fully
developed turbulence which have not been answered. This is perhaps the biggest
challenge in classical physics. The literature on the subject is vast and very few
people, if any, have a full overview of the subject. In the updated version of
Monin and Yaglom’s classic book the bibliography alone covers more than 60
pages (Monin & Yaglom, 1981).

The phenomenology of turbulence was described by Richardson (1922) and
quantified in a scaling theory by Kolmogorov (1941b). This description stands
today, and has been shown to be basically correct by numerous experiments and
observations. However, there are corrections which are not explainable by the
Kolmogorov theory. These corrections are deviations in scaling exponents for
the scaling of correlation functions. The Kolmogorov theory is not based on the
Navier–Stokes equation, except for one of the very few exact relations, namely
the four-fifth law, describing the scaling of a third order correlation function.
A final theory explaining the corrections should be based on the Navier–Stokes
equation.
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2 Introduction to turbulence

Shell models of turbulence were introduced by Obukhov (1971) and Gledzer
(1973). They consist of a set of ordinary differential equations structurally similar
to the spectral Navier–Stokes equation. These models are much simpler and
numerically easier to investigate than the Navier–Stokes equation. For these
models a scaling theory identical to the Kolmogorov theory has been devel-
oped, and they show the same kind of deviation from the Kolmogorov scaling
as real turbulent systems do. Understanding the behavior of shell models in
their own right might be a key for understanding the systems governed by the
Navier–Stokes equation. The shell models are constructed to obey the same
conservation laws and symmetries as the Navier–Stokes equation. As well as
energy conservation, the models exhibit, depending on a free parameter of the
model, conservation of a second quantity which can be identified with helicity or
enstrophy. This second quantity signifies whether the models are 3D turbulence-
like where helicity is conserved, or 2D turbulence-like where enstrophy is
conserved.

In the case of 3D helical (non-mirror symmetric) turbulent flow, there exists
a dual cascade of energy and helicity to small scales. A wave number in the
inertial range smaller than the Kolmogorov wave number, where the helicity dissi-
pation becomes important, has been identified. In the case of shell models the flow
becomes non-helical from this wave number on, until energy is dissipated around the
Kolmogorov wave number. In the case of 2D turbulence a forward cascade of energy
to small scales is prohibited altogether by the cascade of enstrophy. On the contrary,
the energy is transported upscale in an inverse cascade. In the case of shell models
we can investigate under what circumstances this is compatible with equipartition-
ing of the conserved quantities in a quasi-equilibrium as predicted by equilibrium
statistical mechanics.

The corrections to the Kolmogorov scaling expressed through the anomalous
scaling exponents can be qualitatively understood as a consequence of intermittency
in the energy cascade. By simulation we can make a qualitative link between the
multi-fractal cascade models and the shell models. The relative simplicity of the
shell models also makes it possible to describe the dynamics in terms of bifurcations,
routes to chaos, Lyapunov exponents, and so on using the tools developed in the
theory of chaos for low dimensional dynamical systems.

This chapter presents a review of some of the main characteristics and unknowns
of turbulence. Turbulence is the chaotic and apparently random flow of a stirred
fluid. Fluid flows vary a lot depending on the boundaries containing the flow,
stirring, and heating. The flow in the atmosphere of a rotating planet is different
from the convection in a pot of boiling water. However, as long as the length
scales in the flow are small in comparison to the largest scales, determined by the
boundaries, and large in comparison to the molecular mean free path scales, all flows
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1.1 The Navier–Stokes equation 3

seem to have common characteristics. Turbulence is this common characteristic of
the flows.

1.1 The Navier–Stokes equation

Fluid mechanics is the description of fluids on scales large in comparison to the
mean free path length of the molecules constituting the fluid. In this limit the fluid
is regarded as a continuum characterized completely by a velocity field ui(x, t), a
temperature field T (x), a pressure field p(x) and a density field ρ(x). At each point
xi the fluid is then fully characterized by the six field variables: three components
of velocity, pressure, temperature, and density. In order to determine the evolution
of these we need six equations. These are derived from momentum conservation,
mass conservation, energy conservation, and the equation of state. In any concrete
setting some of the field variables might be approximately constant and the number
of equations reduced. When considering fully developed turbulence the fluid is
traditionally regarded as incompressible, which is a rather good approximation
for water and air. This immediately eliminates the equation specifying density
from consideration. When buoyancy can be neglected the temperature variations
decouple from the momentum and continuity equations and we are left with a fluid
described by the velocity and the pressure field. The dynamics of such a fluid is
described by the Navier–Stokes equation (NSE)

∂tui + uj∂jui = −∂ip + ν∂jjui + fi, (1.1)

and the continuity equation
∂iui = 0. (1.2)

The NSE describes the conservation of momentum. In this book we mainly use
the tensor notation: ∂iuj ≡ ∂uj/∂xi, ∂ijuk ≡ ∂2uk/∂xi∂xj, etc., and the Einstein
convention of summing repeated indices; ∂kk f ≡ �f denotes the Laplacian of f .
The equation states that the acceleration of a fluid particle equals the sum of the
forces acting on the fluid particle (per unit mass). The left hand side is the material
derivative of the velocity field, where the second term is the advection. The first
term on the right hand side is the pressure gradient force, the second is the viscous
friction (viscosity) and the last term represents all other forces per unit of mass.
The last term is, historically speaking, not a part of the NSE but we will specify it
whenever convenient.

The continuity equation is the equation for conservation of mass, where in the
case of an incompressible fluid the density does not appear. The inverse of the
density, which normally appears in front of the gradient of pressure in (1.1) is thus
also absorbed in the units of pressure. From these (four) equations, together with
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4 Introduction to turbulence

boundary and initial conditions, the three components of the fluid velocity ui and
the pressure p can in principle be determined.

However, no general solutions to the NSE are known and a solution can be found
only for very simple laminar flows. Pressure can immediately be eliminated from
the NSE using the continuity Equation (1.2). Assuming the force to be rotational,
∂ifi = 0, we obtain a Poisson equation for the pressure by applying the divergence
operator to the NSE

∂iip = −∂iuj∂jui, (1.3)

which we can formally solve by applying the inverse Laplacian

p = −∂−1
kk (∂iuj∂jui). (1.4)

We make sense of the inverse of a differential operator when expressing the NSE
in terms of Fourier components.

The NSE can be brought to a dimensionless form by defining

x = Lx̃, u = Uũ, t = (L/U )t̃, (1.5)

where L is the length scale of the largest variations in the flow. Note that L would
typically be the size of the container or basin for a bounded flow or the size of
an obstacle in an extended uniform flow; L is called the integral or outer scale;
U is the typical velocity difference at this length scale. We can think of U as the
typical velocity when coarse graining the flow at the length scale L. As it is derived
from Newton’s second law the NSE is Galilean invariant. This means that adding a
uniform velocity, say, by moving the frame of reference, does not change the NSE.
Thus the overall uniform center of mass velocity is unchanged (in the case that the
sum of external forces vanishes) and only velocity differences are important. From
L and U we can build a timescale T = L/U , which is just the time it takes the fluid
at uniform velocity U to travel the distance L. Inserting this into (1.1) and dropping
the tilde “˜” gives the NSE in dimensionless form:

∂tui + uj∂jui = −∂ip + Re−1∂jjui + fi, (1.6)

where we have defined the dimensionless Reynolds number

Re ≡ UL

ν
, (1.7)

and absorbed a factor U 2/L into the forcing term. The pressure gradient term is,
as can be seen from (1.4), dimensionally the gradient of a velocity squared, so that
it scales with changing units of length and time like the advection term. All terms
except for the viscosity are now of order unity. The viscosity is of the order of
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1.1 The Navier–Stokes equation 5

Figure 1.1 Low Reynolds number flow of ice where the viscosity completely
dominates the flow. The pheomenon is called an icefall. The fall is about 400 m at
the Lambert Glacier, Antarctica (NASA/Landsat).

the inverse of the Reynolds number, so that the Reynolds number is a measure of
the relative importance of the viscosity in comparison to the nonlinear terms (the
advection and the pressure gradient term) at the length scale L and velocity scale
U . The Reynolds number is the fundamental characteristic of any given flow. For
a Reynolds number smaller than one the flow will quickly be damped by viscosity,
or the viscous term will balance the external forces such as gravity, as is the case in
Figure 1.1. The viscosity acts as a smoother of irregularities and has the form of a
diffusion term. When the Reynolds number becomes larger the flow will be more
and more dominated by the nonlinear terms.

For small Reynolds numbers the flow is smooth and regular. As the Reynolds
number is increased the fluid motion in the wake becomes more and more irregular.
Increasing Reynolds number flow can be seen as a successive symmetry breaking.
For very high Reynolds numbers the regularity of the von Kármán street shown in
Figure 1.2 disappears and the flow is completely chaotic and apparently random.
This is called fully developed turbulence. It characterizes many systems in nature,

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-19036-7 - Turbulence and Shell Models
Peter D. Ditlevsen
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521190367


6 Introduction to turbulence

Figure 1.2 Atmospheric flow around Selkirk Island in the southern Pacific Ocean,
where the dense cloud cover makes the flow visible. The highest point of the island
is about 1.6 km above sea level, obstructing the flow. The phenomenon is called a
von Kármán vortex street. (NASA/Landsat)

such as the flow in the atmospheric boundary layer, river flow, the wake after a
jet-engine, smoke from a cigar, and many other phenomena. All the richness of the
complex behavior of these systems is, we believe, described by the NSE. Direct
numerical simulations of the NSE indeed show some of this richness. However,
no general theory exists with which we can relate directly the NSE and the rich
phenomenology observed in nature and experiments. For high Reynolds number
flow there will be a large range of scales where the viscous dissipation is negligible.
Assuming either a non-forced decaying motion or forcing restricted to the large
scales, motion in this range will be determined by inertia. This is thus called the
inertial range. Fully developed turbulence is characterized by a long inertial range.
The structure and dynamics of different flows in this range seem in some statistical
sense to be alike and one may ask if there is some universality in the behavior of the
flows.

The common phenomenology of fully developed turbulence is attributed to
Richardson (1922). Richardson describes the flow as consisting of large swirls
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1.2 Kolmogorov’s 1941 theory (K41) 7

breaking up into smaller swirls, which again break up into yet smaller swirls
until finally the swirls are so small that they are smoothed out, or dissipated,
by the viscosity. The energy is inserted into the flow at large scales, it then
cascades into smaller and smaller scales until it leaves the flow at the viscous
scale. In 1941 this led Kolmogorov to develop a phenomenological theory of
turbulence.

1.2 Kolmogorov’s 1941 theory (K41)

The paper in which Kolmogorov (1941b) presents the theory is only one half page
long and the idea is very simple. It is presented thoroughly by Landau and Lifshitz
(1987). Here we will go through it briefly. Kolmogorov imagined a flow initiated
by vigorous stirring and then left alone to slowly dampen out by viscosity. This
case of unforced flow is today called decaying turbulence. The flow is assumed to
be homogeneous (translationally invariant in the mean) and isotropic (rotationally
invariant in the mean). The picture we have in mind here is a flow maintained
by a force active on large scales of the flow, such that the flow is in a state of
statistical equilibrium in the sense that on average the energy input by the force is
balanced by the energy dissipated by viscosity (heating the fluid). The state of the
flow is then characterized by the mean energy dissipation per unit of mass ε due
to viscosity. The velocity characteristic of a given length scale l � L is the typical
velocity difference δu(l)≡ |u(r+ l)−u(r)|, where for clarity we suppress all vector
indices. This velocity difference is characteristic of the velocity associated with an
eddy of size l. The effect of the larger scale flow velocity is merely to move, or
sweep, the eddy through the flow as a rigid body. Likewise, if we consider a much
smaller eddy within the larger eddy, the effect of the larger eddy on the smaller is the
same as the effect of the larger scale flow on the large eddy. Since there is nothing
physically significant about a given length scale l in the flow we assume the flow
to be self-similar in the sense that when l1 < l2 � L the velocity differences are
related by δu(l2) = f (l1/l2)δu(l1), where f is some universal function. This implies
that the velocity difference δu(l) can only be a function of the scale l and the mean
energy dissipation ε. From dimensional counting the only possible relationship is

δu(l) ∼ (ε l)1/3, (1.8)

where ∼ means proportionality. The eddy turnover time is the typical timescale
for a fluid parcel propagating across the size of the eddy with the typical velocity
associated with that eddy.

We use these kinds of dimensional argument throughout this book. The scal-
ing relation (1.8) is obtained from the fact that only quantities of the same
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8 Introduction to turbulence

dimension can be compared. So if we want to establish a functional relationship

δu(l) = f̃ (l,ε), (1.9)

the dimension of the right hand side must be the same as the dimension of
the left hand side. Furthermore, the numerical value of the quantity on the left
hand side cannot depend on change of units of the quantities on the right hand
side which leave the units on the left hand side unchanged. If, for example, we
measure length in millimeters and time in milliseconds instead of metres and
seconds, the numerical value of velocity is unchanged. However, the numerical
values of l and ε change. If (1.9) is to hold regardless of the change of units, f
can only depend on the combination of l and ε which has the same dimension
as the left hand side. The dimensions are [δu] =m/s, [l] = m, [ε] = m2/s3, so
for [δu] = [l]α[ε]β we get, β = α = 1/3. From this we get δu(l) = f [(εl)1/3].
By changing the units of velocity, say scaling length by a factor λ, we get

λδu(l) = λf [(ε l)1/3] = f [λ(ε l)1/3]. (1.10)

Thus we see that f must be a linear function and we obtain (1.8).
The relation (1.8) contains all the essentials of the K41 theory. The scale η at

which the dissipation becomes important is called the Kolmogorov, or inner scale,
in contrast to L, the outer, or integral scale. From (1.1) we can get an estimate of
the rate of change of the energy per unit volume due to dissipation at the scale η,
ε ∼ νui∂jjui ∼ νδu(η)2/η2. Using (1.8) we get

η ∼ (ε/ν3)−1/4. (1.11)

So keeping the integral length scale velocity and the mean energy dissi-
pation ε fixed, the Kolmogorov scale depends on the Reynolds number as
η ∼ Re−3/4.

The mean of the square of the velocity difference is called the second order
structure function S2(l). The scaling of S2(l) is obtained by simply squaring (1.8):

S2(l) ≡ 〈δu(l)2〉 ∼ (εl)2/3. (1.12)

The mean 〈.〉 denotes an ensemble average, defined as the average over many
realizations of the flow with different initial conditions (drawn from some dis-
tribution). Assuming ergodicity, this could as well be a temporal average (in a
given set of points), or a spatial average in the case of homogeneity. We will
freely assume these three to be equal or use either at our convenience with-
out dwelling more on subtleties regarding the assumption of ergodicity or the
distribution of initial conditions. A rigorous discussion can be found in Frisch
(1995).
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1.3 The spectral Navier–Stokes equation 9

1.3 The spectral Navier–Stokes equation

Consider the Fourier transform of the velocity field, Equations (A.3) and (A.4):

F− : ui(k) = 1

(2π)3

∫
e−ιkx ui(x)dx, (1.13)

F+ : ui(x) =
∫

eιkx ui(k)dk, (1.14)

using the notation introduced in Appendix A.1.
Transforming by F−, using (A.9)–(A.11), the NSE (1.1), and the Poisson

Equation (1.3) give,

∂tui(k) = −ι

∫
uj(k − k′)k ′

j ui(k′)dk′

− ιkip(k)− νkjkjui(k)+ fi(k), (1.15)

and

−kjkjp(k) = −
∫

(ki − k ′
i )uj(k − k′)k ′

l um(k′)dk′δljδmi

= −
∫

(kj − k ′
j )ul(k − k′)k ′

l uj(k′)dk′

= −
∫

kjk
′
l ul(k − k′)uj(k′)dk′. (1.16)

It has been noted that incompressibility implies k ′
j uj(k′) = 0. Substitution of p(k)

from (1.16) into (1.15) gives the spectral NSE

∂tui(k) = −ιkj

∫ (
δil − kik ′

l

k2

)
uj(k′)ul(k − k′)dk′

− νk2ui(k)+ fi(k), (1.17)

where k2 = kjkj.
If we consider the flow in a box of size L3 with periodic boundary conditions,

the Fourier transform is substituted by a Fourier series and the integral in (1.17)
becomes a sum
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10 Introduction to turbulence

∂tui(n) = −ι (2π/L)nj

∑
n′

(
δil − nin′

l

n2

)
uj(n′)ul(n − n′)

− νn2ui(n)+ fi(n), (1.18)

where the wave vectors are k(n) = 2πn/L, and n2 = njnj. This form of the NSE is
the starting point for the shell models. The partial differential equation (PDE) (1.1)
has now been substituted by a hierarchy of coupled ordinary differential equations
(ODEs). The nonlinear terms are quadratic in the velocities. The interactions are
such that only waves with wave vectors adding up to zero are coupled. Such a
set of three waves is called a triad. It can be shown by manipulating indices in
(1.17) and (1.18) that the inviscid energy conservation fulfilled by the NSE is a
detailed energy balance, so that energy is exchanged within each triad. The algebra
involved in proving this and many other relations of the NSE is much simpler, but
completely similar in the case of shell models. We thus for transparency do many
of the calculations for the case of shell models.

1.4 The spectral energy density

The second order structure function (1.12) is related to the spectral energy density
through a Fourier transform, as we now show. The energy density per unit of mass
of the flow can be expressed in spectral form by use of Parseval’s identity (A.7):

E = 1

2

∫
u(x)2dx = 1

2
(2π)3

∫ ∞

0
ui(k)ui(k)∗dk

= 1

2
(2π)34π

∫ ∞

0
k2|u(k)|2dk ≡

∫
E(k)dk, (1.19)

where we have assumed the flow to be isotropic, ui(k) = ui(k), and performed the
integration over the sphere. We have absorbed the unit of length into the spatial
variable dx → dx/L3, where L is the linear size of the integration box. Thus we
define the spectral energy density as

E(k) = 2π(2π)3k2|u(k)|2. (1.20)

The Fourier transform of the velocity is expressed in terms of the second order
structure function

S2(l) = 〈δu(l)2〉 =
∫

[u(l + x)− u(x)]2dx

= 2
∫

[u(x)2 − u(l + x)u(x)]dx. (1.21)
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