
Association schemes were invented by statisticians on order to enable
them to extend their range of block designs from 2-designs to partially
balanced designs. However, they have intrinsic interest to combinatori-
alists and to group theorists as they include strongly regular graphs and
schemes based on Abelian groups. They also have a wider use within
statistics, forming the basic structures of many designed experiments.
This book blends these topics in an accessible way without assuming
any background in either group theory or designed experiments.
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Preface

Incomplete-block designs for experiments were first developed by Yates
at Rothamsted Experimental Station. He produced a remarkable col-
lection of designs for individual experiments. Two of them are shown,
with the data from the experiment, in Example 4.3 on page 97 and
Exercise 5.9 on page 141. This type of design poses two questions for
statisticians: (i) what is the best way of choosing subsets of the treat-
ments to allocate to the blocks, given the resource constraints? (ii) how
should the data from the experiment be analysed?

Designs with partial balance help statisticians to answer both of these
questions. The designs were formally introduced by Bose and Nair in
1939. The fundamental underlying concept is the association scheme,
which was defined in its own right by Bose and Shimamoto in 1952.
Theorem 5.2 on page 114 shows the importance of association schemes:
the pattern of variances matches the pattern of concurrences.

Many experiments have more than one system of blocks. These can
have complicated inter-relationships, like the examples in Section 7.1,
which are all taken from real experiments. The general structure is
called an orthogonal block structure. Although these were introduced
independently of partially balanced incomplete-block designs, they too
are association schemes. Thus association schemes play an important
role in the design of experiments.

Association schemes also arise naturally in the theory of permuta-
tion groups, quite independently of any statistical applications. Much
modern literature on association schemes is couched in the language of
abstract algebra, with the unfortunate effect that it is virtually inacces-
sible to statisticians. The result is that many practising statisticians do
not know the basic theory of the Bose–Mesner algebra for association
schemes, even though it is this algebra that makes everything work. On
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xiv Preface

the other hand, many pure mathematicians working in the subject have
no knowledge of the subject’s origin in, and continued utility in, designed
experiments.

This book is an attempt to bridge the gap, and is intended to be acces-
sible to both audiences. The first half is at a level suitable for final-year
undergraduates (on the four-year MSci programme) or MSc students
in Mathematics or Statistics. It assumes some linear algebra, modular
arithmetic, elementary ideas about graphs, and some probability, but
no statistics and very little abstract algebra. The material assumed
can be found in almost any standard books on linear algebra, discrete
mathematics and probability respectively: for example, [11], [49], [107].
The linear algebra is revised where it is needed (Sections 1.3, 2.1, 3.1),
partly to establish the notation used in this book. The same is done for
random variables in Section 4.2. Techniques which use finite fields are
deliberately avoided, although the reader with some knowledge of them
may be able to see where examples can be generalized.

After the basic theory in the first two chapters, the book has three
main strands. The first one is the use of association schemes in designed
experiments, which is developed in Chapters 4, 5, 7 and parts of 8 and 11.
The second is the fruitful interplay between association schemes and
partitions: see Chapters 6, 7, 9, 10 and 11. The third gives methods of
creating new association schemes from old ones. This starts in Chapter 3
to give us an easy mechanism for developing examples, and continues in
Chapters 9 and 10.

Chapters 1–6 form the heart of the book. Chapter 1 introduces associ-
ation schemes and gives the three different ways of thinking about them:
as partitions, as adjacency matrices, as coloured graphs. It also gives
many families of association schemes. Chapter 2 moves straight to
the Bose–Mesner algebra spanned by the adjacency matrices. The fact
that this algebra is commutative implies that these matrices have com-
mon eigenspaces, called strata. The relationship between the adjacency
matrices and the stratum projectors is called the character table: this
is the clue to all calculations in the association scheme. This chapter
includes a section on techniques for actually calculating character tables:
this should be useful for anyone who needs to make calculations in speci-
fic association schemes, for example to calculate the efficiency factors of
a block design.

Chapter 3 introduces crossing and nesting, two methods of combining
two association schemes to make a new one. Although these are not
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Preface xv

strictly necessary for an understanding of Chapters 4–6, they provide a
wealth of new examples, and a glimpse, in Section 3.5, of the complicated
structures that can occur in real experiments.

Chapters 4 and 5 cover incomplete-block designs. Chapter 4 gives
the general theory, including enough about data analysis to show what
makes a design good. In Chapter 5 this is specialized to partially bal-
anced incomplete-block designs, where the Bose–Mesner algebra gives
very pleasing results. Many of Yates’s designs are re-examined in the
light of the general results.

Chapter 6 introduces the machinery for calculating with partitions
of a set. This leads immediately to the definition of orthogonal block
structures and derivation of their properties. They yield association
schemes which have explicit formulas for the character tables.

The next three chapters build on this core but are almost indepen-
dent of each other. Chapter 7 covers designs where the experimental
units have an orthogonal block structure more complicated than just
one system of blocks. There are designs for row-column arrays, for
nested blocks, for row-column arrays with split plots, and so on. The
idea of partial balance from Chapter 5 is extended to these more compli-
cated designs. Topics covered include efficiency of estimation, combining
information from different strata, and randomization. All of this needs
the Bose–Mesner algebra.

Group theory is deliberately avoided in Chapters 1–7, because many
statisticians do not know any. Cyclic designs are dealt with by using
modular arithmetic without any appeal to more general group theory.
However, the reader who is familiar with group theory will realise that all
such results can be generalized, sometimes to all finite groups, sometimes
just to Abelian ones. Chapter 8 revisits Chapters 1–7 and makes this
generalization where it can. Later chapters have short sections referring
back to this chapter, but the reader without group theory can omit them
without losing the main story.

Chapter 9 is devoted to poset block structures, a special class of ortho-
gonal block structures that is very familiar to statisticians. They were
developed and understood long before the more general orthogonal block
structures but, ironically, have a more complicated theory, which is why
they are deferred to this part of the book. Part of the difficulty is that
there are two partial orders, which can easily be confused with each
other. The idea of poset block structures also gives a new method of
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xvi Preface

combining several association schemes, which generalizes both crossing
and nesting.

Chapters 10 and 11 are the most abstract, drawing on all the previ-
ous material, and heavily using the methods of calculating with parti-
tions that were developed in Chapter 6. Chapter 10 looks at association
schemes with an algebraist’s eye, giving some relations between associ-
ation schemes on different sets. It gives further constructions of new
from old, and shows the important role of orthogonal block structures.
Some of these results feed into Chapter 11, which looks at association
schemes on the same set, trying to answer two statistically motivated
questions from earlier chapters. Is there a ‘simplest’ association scheme
with respect to which a given incomplete-block design is partially bal-
anced? This has a positive answer. If there is more than one system of
blocks, does it matter if they give partial balance for different association
schemes? The answer is messy in general but detailed answers can be
given for the three main classes of association schemes discussed in the
book: orthogonal block structures, poset block structures, and Abelian
group schemes.

The book concludes with two short chapters, looking to the future
and summarizing the history.

The reader who simply wants an introduction to association schemes
as they occur in designed experiments should read Chapters 1–6. For
more emphasis on pure combinatorics, replace parts of Chapters 4 and 5
with parts of Chapters 8 and 10. The reader who designs experiments
should also read Chapter 7 and one or both of Chapters 8 and 9. The
reader who is more interested in the interplay between partitions and
association schemes could read Chapters 1–3, 6 and 8–11.

This book differs from statistics books on incomplete-block designs,
such as [70, 134, 137, 140], in that it uses the Bose–Mesner algebra
explicitly and centrally. Even books like [91, 201], which cover many
partially balanced designs, do not make full use of the Bose–Mesner
algebra. Furthermore, orthogonal block structures are developed here
in their own right, with a coherent theory, and Chapter 7 gives a more
detailed coverage of designs for orthogonal block structures than can be
found in any other book on designed experiments.

On the other hand, this book differs from pure mathematical books
on association schemes not just because of its attention to statistical
matters. The inclusion of explicit sections on calculation (Sections 2.4,
5.2 and 6.4) is unusual. So is the emphasis on imprimitive association
schemes, which are deliberately downplayed in books such as [43, 258].
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Preface xvii

On the other hand, I make no attempt to cover such topics as Krein
parameters, polynomial schemes or the links with coding theory.

Most of the material in Chapters 6–7 and 9–11 has not previously
appeared in book form, as far as I know.

Some topics in this book already have an established literature, with
standard notation, although that may differ between research communi-
ties, for example t or v for the number of treatments. I have decided to
aim for consistency within the book, as far as is practicable, rather than
consistency with the established literatures. Thus I am thinking more of
the reader who is new to the subject and who starts at Chapter 1 than
I am of the specialist who dips in. If your favourite notation includes an
overworked symbol such as n, k, λ or P , be prepared to find something
else. I hope that the glossary of notation on page 355 will be helpful.

Web page

Updated information about this book, such as known errors, is available
on the following web page.
http://www.maths.qmul.ac.uk/~rab/Asbook

R. A. Bailey
School of Mathematical Sciences

Queen Mary, University of London
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