> Association schemes were invented by statisticians on order to enable them to extend their range of block designs from 2-designs to partially balanced designs. However, they have intrinsic interest to combinatorialists and to group theorists as they include strongly regular graphs and schemes based on Abelian groups. They also have a wider use within statistics, forming the basic structures of many designed experiments. This book blends these topics in an accessible way without assuming any background in either group theory or designed experiments.

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 84

Editorial Board

B. Bollobas, W. Fulton, A. Katok, F. Kirwan, P. Sarnak

ASSOCIATION SCHEMES DESIGNED EXPERIMENTS, ALGEBRA AND COMBINATORICS

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS

Editorial Board:

B. Bollobas, W. Fulton, A. Katok, F. Kirwan, P. Sarnak, B. Simon

Already published

- 17 W. Dicks & M. Dunwoody Groups acting on graphs
- 18 L.J. Corwin & F.P. Greenleaf Representations of nilpotent Lie groups and their applications
- 19 R. Fritsch & R. Piccinini Cellular structures in topology
- 20 H. Klingen Introductory lectures on Siegel modular forms
- 21 P. Koosis The logarithmic integral II
- 22 M.J. Collins Representations and characters of finite groups
- 24 H. Kunita Stochastic flows and stochastic differential equations
- 25 P. Wojtaszczyk Banach spaces for analysts
- 26 J.E. Gilbert & M.A.M. Murray Clifford algebras and Dirac operators in harmonic analysis
- 27 A. Frohlich & M.J. Taylor Algebraic number theory
- 28 K. Goebel & W.A. Kirk Topics in metric fixed point theory
- 29 J.F. Humphreys Reflection groups and Coxeter groups
- 30 D.J. Benson Representations and cohomology 1
- 31 D.J. Benson Representations and cohomology II
- 32 C. Allday & V. Puppe Cohomological methods in transformation groups
 33 C. Soule et al. Lectures on Arakelov geometry
- 34 A. Ambrosetti & G. Prodi A primer of nonlinear analysis
- 35 J. Palis & F. Takens Hyperbolicity, stability and chaos at homoclinic bifurcations
- 37 Y. Meyer Wavelets and operators I 38 C. Weibel An introduction to homological algebra
- 39 W. Bruns & J. Herzog Cohen-Macaulary rings
- 40 V. Snaith Explict Brauer induction
- 41 G. Laumon Cohomology of Drinfeld modular varieties I
- 42 E.B. Davies Spectral theory and differential operators 43 J. Diestel, H. Jarchow, & A. Tonge Absolutely summing operators
- 44 P. Mattila Geometry of sets and measures in Euclidean spaces
- 45 R. Pinsky Positive harmonic functions and diffusion
- 46 G. Tenenbaum Introduction to analytic and probabilistic number theory
- 47 C. Peskine An algebraic introduction to complex projective geometry
- 48 Y. Meyer & R. Coifman Wavelets
- 49 R. Stanley Enumerative combinatorics I
- 50 I. Porteous Clifford algebras and the classical groups
- 51 M. Audin Spinning tops
- 52 V. Jurdjevic Geometric control theory
- 53 H. Volklein Groups as Galois groups
- 54 J. Le Potier Lectures on vector bundles
- 55 D. Bump Automorphic forms and representations
- 56 G. Laumon Cohomology of Drinfeld modular varieties II
- 57 D.M. Clark & B.A. Davey Natural dualities for the working algebraist
- 58 J. McCleary A user's guide to spectral sequences II
- 59 P. Taylor Practical foundations of mathematics
- 60 M.P. Brodmann & R.Y. Sharp Local cohomology
- 61 J.D. Dixon et al. Analytic pro-P groups
- 62 R. Stanley Enumerative combinatorics II
- 63 R.M. Dudley Uniform central limit theorems
- 64 J. Jost & X. Li-Jost Calculus of variations
- 65 A.J. Berrick & M.E. Keating An introduction to rings and modules
- 66 S. Morosawa Holomorphic dynamics
- 67 A.J. Berrick & M.E. Keating Categories and modules with K-theory in view
- 68 K. Sato Levy processes and infinitely divisible distributions
- 69 H. Hida Modular forms and Galois cohomology
- 70 R. Iorio & V. Iorio Fourier analysis and partial differential equations
- 71 R. Blei Analysis in integer and fractional dimensions
- 72 F. Borceaux & G. Janelidze Galois theories
- 73 B. Bollobas Random graphs
- 74 R.M. Dudley Real analysis and probability
- 75 T. Sheil-Small Complex polynomials
- 76 C. Voisin Hodge theory and complex algebraic geometry 1
- 77 C. Voisin Hodge theory and complex algebraic geometry II78 V. Paulsen Completely bounded maps and operator algebras
- 82 G. Tourlakis Lectures in logic and set theory I
- 83 G. Tourlakis Lectures in logic and set theory II

ASSOCIATION SCHEMES DESIGNED EXPERIMENTS, ALGEBRA AND COMBINATORICS

R. A. Bailey Queen Mary, University of London

Cambridge University Press 978-0-521-18801-2 - Association Schemes Designed Experiments, Algebra and Combinatorics R. A. Bailey Frontmatter More information

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521188012

© Cambridge University Press 2004

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2004 First paperback edition 2011

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Bailey, R. (Rosemary) Association schemes: designed experiments, algebra, and combinatorics / R.A. Bailey. p. cm. – (Cambridge studies in advanced mathematics; 84) Includes bibliographical references and index. ISBN 0 521 82446 x I. Association schemes (Combinatorial analysis) 2. Experimental design. I. Title. II. Series. QAI64.B347 2003 511'.6 – dc21 2003044034

> ISBN 978-0-521-82446-0 Hardback ISBN 978-0-521-18801-2 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

© in this web service Cambridge University Press

Contents

Pr	eface		page xiii
Ac	know	xviii	
1	Asso	1	
	1.1	Partitions	1
	1.2	Graphs	7
	1.3	Matrices	10
	1.4	Some special association schemes	17
		1.4.1 Triangular association schemes	17
		1.4.2 Johnson schemes	18
		1.4.3 Hamming schemes	18
		1.4.4 Distance-regular graphs	19
		1.4.5 Cyclic association schemes	22
	Exe	rcises	26
2	The	Bose–Mesner algebra	31
	2.1	Orthogonality	31
	2.2	The algebra	34
	2.3	The character table	39
	2.4	Techniques	43
	2.5	Parameters of strongly regular graphs	52
	Exe	rcises	56
3	Combining association schemes		59
	3.1	Tensor products	59
	3.2	Crossing	61
	3.3	Isomorphism	66
	3.4	Nesting	69
	3.5	Iterated crossing and nesting	74

. . .

vii	i <i>Contents</i>	
	Exercises	77
4	Incomplete-block designs	79
	4.1 Block designs	79
	4.2 Random variables	83
	4.3 Estimating treatment effects	84
	4.4 Efficiency factors	90
	4.5 Estimating variance	95
	4.6 Building block designs	103
	4.6.1 Juxtaposition	103
	4.6.2 Inflation	105
	4.6.3 Orthogonal superposition	106
	4.6.4 Products	108
	Exercises	109
5	Partial balance	111
	5.1 Partially balanced incomplete-block designs	111
	5.2 Variance and efficiency	114
	5.3 Concurrence and variance	120
	5.4 Cyclic designs	124
	5.5 Lattice designs	129
	5.5.1 Simple lattice designs	129
	5.5.2 Square lattice designs	130
	5.5.3 Cubic and higher-dimensional lattices	131
	5.5.4 Rectangular lattice designs	132
	5.6 General constructions	135
	5.6.1 Elementary designs	136
	5.6.2 New designs from old	136
	5.7 Optimality	138
	Exercises	140
6	Families of partitions	145
	6.1 A partial order on partitions	145
	6.2 Orthogonal partitions	149
	6.3 Orthogonal block structures	152
	6.4 Calculations	155
	6.5 Orthogonal block structures from Latin squares	161
	6.6 Crossing and nesting orthogonal block structures	163
	Exercises	169
7	Designs for structured sets	171
	7.1 Designs on orthogonal block structures	171

		Contents	ix
		7.1.1 Row-column designs	172
		7.1.2 Nested blocks	172
		7.1.3 Nested row-column designs	173
		7.1.4 Row-column designs with split plots	174
		7.1.5 Other orthogonal block structures	174
	7.2	Overall partial balance	175
	7.3	Fixed effects	182
	7.4	Random effects	185
	7.5	Special classes of design	196
		7.5.1 Orthogonal designs	196
		7.5.2 Balanced designs	198
		7.5.3 Cyclic designs	200
		7.5.4 Lattice squares	206
	7.6	Valid randomization	207
	7.7	Designs on association schemes	212
		7.7.1 General theory	212
		7.7.2 Composite designs	215
		7.7.3 Designs on triangular schemes	217
		7.7.4 Designs on Latin-square schemes	219
	Fvo	(.(.5 Designs on pair schemes	220 222
0	C	101505	222
8	Gro	ups	227
	8.1	Blueprints	227
	8.2	Characters	230
	8.3	Abalian group black designs	233 925
	0.4 0.5	Abelian group decigns on structured sets	200 020
	0.0 8.6	Croup block structures	200 240
	8.0 8.7	Automorphism groups	$240 \\ 245$
	8.8	Latin cubes	$\frac{240}{240}$
	Exe	rcises	$\frac{249}{252}$
0	Pos	ats	255
0	9.1	Product sets	255 255
	9.2	A partial order on subscripts	256
	9.3	Crossing and nesting	$\frac{260}{259}$
	9.4	Parameters of poset block structures	<u>-</u> 50 262
	9.5	Lattice laws	265
	9.6	Poset operators	268
	Exe	rcises	275

х	Contents	
1() Subschemes, quotients, duals and products	277
	10.1 Inherent partitions	277
	10.2 Subschemes	279
	10.3 Ideal partitions	281
	10.4 Quotient schemes and homomorphisms	283
	10.5 Dual schemes	288
	10.6 New from old	292
	10.6.1 Relaxed wreath products	292
	10.6.2 Crested products	293
	10.6.3 Hamming powers	297
	Exercises	299
11	Association schemes on the same set	301
	11.1 The partial order on association schemes	301
	11.2 Suprema	303
	11.3 Infima	304
	11.4 Group schemes	309
	11.5 Poset block structures	312
	11.6 Orthogonal block structures	318
	11.7 Crossing and nesting	323
	11.8 Mutually orthogonal Latin squares	323
	Exercises	325
12	2 Where next?	329
	12.1 Few parameters	329
	12.2 Unequal replication	330
	12.3 Generalizations of association schemes	334
13	B History and references	343
	13.1 Statistics	343
	13.1.1 Basics of experimental design	343
	13.1.2 Factorial designs	343
	13.1.3 Incomplete-block designs	344
	13.1.4 Partial balance	346
	13.1.5 Orthogonal block structures	348
	13.1.6 Multi-stratum experiments	349
	13.1.7 Order on association schemes	350
	13.2 Algebra and combinatorics	350
	13.2.1 Permutation groups, coherent configurations and	
	cellular algebras	350
	13.2.2 Strongly regular graphs	352

Contents	xi
13.2.3 Distance-regular graphs	352
13.2.4 Geometry	353
13.2.5 Delsarte's thesis and coding theory	353
13.2.6 Duals	353
13.2.7 Imprimitivity	354
13.2.8 Recent work	354
Glossary of notation	355
References	367
Index	381

Preface

Incomplete-block designs for experiments were first developed by Yates at Rothamsted Experimental Station. He produced a remarkable collection of designs for individual experiments. Two of them are shown, with the data from the experiment, in Example 4.3 on page 97 and Exercise 5.9 on page 141. This type of design poses two questions for statisticians: (i) what is the best way of choosing subsets of the treatments to allocate to the blocks, given the resource constraints? (ii) how should the data from the experiment be analysed?

Designs with partial balance help statisticians to answer both of these questions. The designs were formally introduced by Bose and Nair in 1939. The fundamental underlying concept is the association scheme, which was defined in its own right by Bose and Shimamoto in 1952. Theorem 5.2 on page 114 shows the importance of association schemes: the pattern of variances matches the pattern of concurrences.

Many experiments have more than one system of blocks. These can have complicated inter-relationships, like the examples in Section 7.1, which are all taken from real experiments. The general structure is called an orthogonal block structure. Although these were introduced independently of partially balanced incomplete-block designs, they too are association schemes. Thus association schemes play an important role in the design of experiments.

Association schemes also arise naturally in the theory of permutation groups, quite independently of any statistical applications. Much modern literature on association schemes is couched in the language of abstract algebra, with the unfortunate effect that it is virtually inaccessible to statisticians. The result is that many practising statisticians do not know the basic theory of the Bose–Mesner algebra for association schemes, even though it is this algebra that makes everything work. On

Cambridge University Press 978-0-521-18801-2 - Association Schemes Designed Experiments, Algebra and Combinatorics R. A. Bailey Frontmatter More information

xiv

Preface

the other hand, many pure mathematicians working in the subject have no knowledge of the subject's origin in, and continued utility in, designed experiments.

This book is an attempt to bridge the gap, and is intended to be accessible to both audiences. The first half is at a level suitable for final-year undergraduates (on the four-year MSci programme) or MSc students in Mathematics or Statistics. It assumes some linear algebra, modular arithmetic, elementary ideas about graphs, and some probability, but no statistics and very little abstract algebra. The material assumed can be found in almost any standard books on linear algebra, discrete mathematics and probability respectively: for example, [11], [49], [107]. The linear algebra is revised where it is needed (Sections 1.3, 2.1, 3.1), partly to establish the notation used in this book. The same is done for random variables in Section 4.2. Techniques which use finite fields are deliberately avoided, although the reader with some knowledge of them may be able to see where examples can be generalized.

After the basic theory in the first two chapters, the book has three main strands. The first one is the use of association schemes in designed experiments, which is developed in Chapters 4, 5, 7 and parts of 8 and 11. The second is the fruitful interplay between association schemes and partitions: see Chapters 6, 7, 9, 10 and 11. The third gives methods of creating new association schemes from old ones. This starts in Chapter 3 to give us an easy mechanism for developing examples, and continues in Chapters 9 and 10.

Chapters 1–6 form the heart of the book. Chapter 1 introduces association schemes and gives the three different ways of thinking about them: as partitions, as adjacency matrices, as coloured graphs. It also gives many families of association schemes. Chapter 2 moves straight to the Bose–Mesner algebra spanned by the adjacency matrices. The fact that this algebra is commutative implies that these matrices have common eigenspaces, called strata. The relationship between the adjacency matrices and the stratum projectors is called the character table: this is the clue to all calculations in the association scheme. This chapter includes a section on techniques for actually calculating character tables: this should be useful for anyone who needs to make calculations in specific association schemes, for example to calculate the efficiency factors of a block design.

Chapter 3 introduces crossing and nesting, two methods of combining two association schemes to make a new one. Although these are not

Preface

strictly necessary for an understanding of Chapters 4–6, they provide a wealth of new examples, and a glimpse, in Section 3.5, of the complicated structures that can occur in real experiments.

Chapters 4 and 5 cover incomplete-block designs. Chapter 4 gives the general theory, including enough about data analysis to show what makes a design good. In Chapter 5 this is specialized to partially balanced incomplete-block designs, where the Bose–Mesner algebra gives very pleasing results. Many of Yates's designs are re-examined in the light of the general results.

Chapter 6 introduces the machinery for calculating with partitions of a set. This leads immediately to the definition of orthogonal block structures and derivation of their properties. They yield association schemes which have explicit formulas for the character tables.

The next three chapters build on this core but are almost independent of each other. Chapter 7 covers designs where the experimental units have an orthogonal block structure more complicated than just one system of blocks. There are designs for row-column arrays, for nested blocks, for row-column arrays with split plots, and so on. The idea of partial balance from Chapter 5 is extended to these more complicated designs. Topics covered include efficiency of estimation, combining information from different strata, and randomization. All of this needs the Bose–Mesner algebra.

Group theory is deliberately avoided in Chapters 1–7, because many statisticians do not know any. Cyclic designs are dealt with by using modular arithmetic without any appeal to more general group theory. However, the reader who is familiar with group theory will realise that all such results can be generalized, sometimes to all finite groups, sometimes just to Abelian ones. Chapter 8 revisits Chapters 1–7 and makes this generalization where it can. Later chapters have short sections referring back to this chapter, but the reader without group theory can omit them without losing the main story.

Chapter 9 is devoted to poset block structures, a special class of orthogonal block structures that is very familiar to statisticians. They were developed and understood long before the more general orthogonal block structures but, ironically, have a more complicated theory, which is why they are deferred to this part of the book. Part of the difficulty is that there are two partial orders, which can easily be confused with each other. The idea of poset block structures also gives a new method of

XV

xvi

Preface

combining several association schemes, which generalizes both crossing and nesting.

Chapters 10 and 11 are the most abstract, drawing on all the previous material, and heavily using the methods of calculating with partitions that were developed in Chapter 6. Chapter 10 looks at association schemes with an algebraist's eye, giving some relations between association schemes on different sets. It gives further constructions of new from old, and shows the important role of orthogonal block structures. Some of these results feed into Chapter 11, which looks at association schemes on the same set, trying to answer two statistically motivated questions from earlier chapters. Is there a 'simplest' association scheme with respect to which a given incomplete-block design is partially balanced? This has a positive answer. If there is more than one system of blocks, does it matter if they give partial balance for different association schemes? The answer is messy in general but detailed answers can be given for the three main classes of association schemes discussed in the book: orthogonal block structures, poset block structures, and Abelian group schemes.

The book concludes with two short chapters, looking to the future and summarizing the history.

The reader who simply wants an introduction to association schemes as they occur in designed experiments should read Chapters 1–6. For more emphasis on pure combinatorics, replace parts of Chapters 4 and 5 with parts of Chapters 8 and 10. The reader who designs experiments should also read Chapter 7 and one or both of Chapters 8 and 9. The reader who is more interested in the interplay between partitions and association schemes could read Chapters 1–3, 6 and 8–11.

This book differs from statistics books on incomplete-block designs, such as [70, 134, 137, 140], in that it uses the Bose–Mesner algebra explicitly and centrally. Even books like [91, 201], which cover many partially balanced designs, do not make full use of the Bose–Mesner algebra. Furthermore, orthogonal block structures are developed here in their own right, with a coherent theory, and Chapter 7 gives a more detailed coverage of designs for orthogonal block structures than can be found in any other book on designed experiments.

On the other hand, this book differs from pure mathematical books on association schemes not just because of its attention to statistical matters. The inclusion of explicit sections on calculation (Sections 2.4, 5.2 and 6.4) is unusual. So is the emphasis on imprimitive association schemes, which are deliberately downplayed in books such as [43, 258].

Preface

xvii

On the other hand, I make no attempt to cover such topics as Krein parameters, polynomial schemes or the links with coding theory.

Most of the material in Chapters 6-7 and 9-11 has not previously appeared in book form, as far as I know.

Some topics in this book already have an established literature, with standard notation, although that may differ between research communities, for example t or v for the number of treatments. I have decided to aim for consistency within the book, as far as is practicable, rather than consistency with the established literatures. Thus I am thinking more of the reader who is new to the subject and who starts at Chapter 1 than I am of the specialist who dips in. If your favourite notation includes an overworked symbol such as n, k, λ or P, be prepared to find something else. I hope that the glossary of notation on page 355 will be helpful.

Web page

Updated information about this book, such as known errors, is available on the following web page.

http://www.maths.qmul.ac.uk/~rab/Asbook

R. A. Bailey School of Mathematical Sciences Queen Mary, University of London Mile End Road London E1 4NS r.a.bailey@qmul.ac.uk

Acknowledgements

My interest in this subject was lit by two courses which I attended as a DPhil student. G. Higman lectured on graphs, geometries and groups, which included strongly regular graphs and generalized polygons; D. G. Higman gave a course on coherent configurations which became [118]. When I turned to statistics I studied simple orthogonal block structures from [182], and I am grateful to T. P. Speed for pointing out that these could be viewed as association schemes. N. L. Johnson and S. Kotz invited me to write an article [17] on partially balanced designs for the Encyclopedia of Statistical Science: I am very glad that they refused to accept my plea of ignorance so that I was forced to see how these designs fitted into the story. Fortunately, I was visiting the University of North Carolina at Chapel Hill at the time, and was able to spend some happy hours in the library reading work by R. C. Bose and his students, one of whom, I. M. Chakravarti, introduced me to Delsarte's thesis. A. W. A. Murray, T. Penttila and P. Diaconis gave early encouragement to the approach taken in [17] and in Chapter 1.

More recently, I am grateful to my colleagues P. J. Cameron and B. A. F. Wehrfritz for encouraging me to develop the material as a lecture course; to those colleagues and students in the Queen Mary Combinatorics Study Group who have commented on draft presentations of the material in Chapters 8–11; and to all those students who have directly or indirectly helped me to develop examples and better ways of explaining things: special thanks here to C. Rutherford, V. Köbberling, E. Postma and E. Gelmi. P. J. Cameron read early drafts of the first six chapters and helped me with the second half of Chapter 13. Of course, the responsibility for the choice of contents, and for the choice of names and notation where there are conflicts between different traditions, is mine, as are all mistakes in the text.