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Quantum fields

Quantum field theory is a necessary tool for the quantum mechanical description
of processes that allow for transitions between states which differ in their particle
content. Quantum field theory is thus quantum mechanics of an arbitrary number of
particles. It is therefore mandatory for relativistic quantum theory since relativistic
kinematics allows for creation and annihilation of particles in accordance with the
formula for equivalence of energy and mass. Relativistic quantum theory is thus in-
herently dealing with many-body systems. One may, however, wonder why quantum
field theoretic methods are so prevalent in condensed matter theory, which consid-
ers non-relativistic many-body systems. The reason is that, though not mandatory,
it provides an efficient way of respecting the quantum statistics of the particles,
i.e. the states of identical fermions or bosons must be antisymmetric and symmet-
ric, respectively, under the interchange of pairs of identical particles. Furthermore,
the treatment of spontaneously symmetry broken states, such as superfluids, is fa-
cilitated; not to mention critical phenomena in connection with phase transitions.
Furthermore, the powerful functional methods of field theory, and methods such as
the renormalization group, can by use of the non-equilibrium field theory technique
be extended to treat non-equilibrium states and thereby transport phenomena.

It is useful to delve once into the underlying mathematical structure of quantum
field theory, but the upshot of this chapter will be very simple: just as in quan-
tum mechanics, where the transition operators, |φ〉〈ψ|, contain the whole content of
quantum kinematics, and the bra and ket annihilate and create states in accordance
with

(|φ〉〈ψ|) |χ〉 = 〈ψ|χ〉 |φ〉 (1.1)

we shall find that in quantum field theory two types of operators do the same job.
One of these operators, the creation operator, a†, is similar in nature to the ket in
the transition operator, and the other, the annihilation operator, a, is similar to
the action of the bra in Eq. (1.1), annihilating the state it operates on. Then the
otherwise messy obedience of the quantum statistics of particles becomes a trivial
matter expressed through the anti-commutation or commutation relations of the
creation and annihilation operators.
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2 1. Quantum fields

1.1 Quantum mechanics

A short discussion of quantum mechanics is first given, setting the scene for the
notation. In quantum mechanics, the state of a physical system is described by a
vector, |ψ〉, providing a complete description of the system. The description is unique
modulo a phase factor, i.e. the state of a physical system is properly represented by
a ray, the equivalence class of vectors eiϕ|ψ〉, differing only by an overall phase factor
of modulo one.

We consider first a single particle. Of particular intuitive importance are the
states where the particle is definitely at a given spatial position, say x, the corre-
sponding state vector being denoted by |x〉. The projection of an arbitrary state onto
such a position state, the scalar product between the states,

ψ(x) = 〈x|ψ〉 , (1.2)

specifies the probability amplitude, the so-called wave function, whose absolute square
is the probability for the event that the particle is located at the position in question.1

The states of definite spatial positions are delta normalized

〈x|x′〉 = δ(x − x′) . (1.3)

Of equal importance is the complementary representation in terms of the states
of definite momentum, the corresponding state vectors denoted by |p〉. Analogous to
the position states they form a complete set or, equivalently, they provide a resolution
of the identity operator, Î, in terms of the momentum state projection operators∫

dp |p〉〈p| = Î . (1.4)

The appearance of an integral in Eq. (1.4) assumes space to be infinite, and the
(conditional) probability amplitude for the event of the particle to be at position x
given it has momentum p is specified by the plane wave function

〈x|p〉 =
1

(2π�)3/2
e

i
�
p·x , (1.5)

the transformation between the complementary representations being Fourier trans-
formation. The states of definite momentum are therefore also delta normalized2

〈p|p′〉 = δ(p − p′) . (1.6)

The possible physical momentum values are represented as eigenvalues, p̂|p〉 =
p|p〉, of the operator

p̂ =
∫

dp p |p〉〈p| (1.7)

1Treating space as a continuum, the relevant quantity is of course the probability for the particle
being in a small volume around the position in question, P (x)∆x = |ψ(x)|2∆x, the absolute square
of the wave function denoting a probability density.

2If the particle is confined in space, say confined in a box as often assumed, the momentum states
are Kronecker normalized, 〈p|p′〉 = δp,p′ .

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-18800-5 - Quantum Field Theory of Non-Equilibrium States
Jorgen Rammer
Excerpt
More information

http://www.cambridge.org/9780521188005
http://www.cambridge.org
http://www.cambridge.org


1.1. Quantum mechanics 3

representing the physical quantity momentum. Similarly for the position of a particle.
The average value of a physical quantity is thus specified by the matrix element of
its corresponding operator, say the average position in state |ψ〉 is given by the three
real numbers composing the vector 〈ψ|x̂|ψ〉. In physics it is customary to interpret a
scalar product as the value of the bra, a linear functional on the state vector space,
on the vector, ket, in question.3

The complementarity of the position and momentum descriptions is also expressed
by the commutator, [x̂, p̂] ≡ x̂ p̂− p̂ x̂, of the operators representing the two physical
quantities, being the c-number specified by the quantum of action

[x̂, p̂] = i� . (1.8)

The fundamental position and momentum representations refer only to the kine-
matical structure of quantum mechanics. The dynamics of a system is determined
by the Hamiltonian Ĥ = H(p̂, x̂), the operator specified according to the correspon-
dence principle by Hamilton’s function H(p̂, x̂), i.e. for a non-relativistic particle of
mass m in a potential V (x) the Hamiltonian, the energy operator, is

Ĥ =
p̂2

2m
+ V (x̂) . (1.9)

It can often be convenient to employ the eigenstates of the Hamiltonian

Ĥ |ελ〉 = ελ |ελ〉 . (1.10)

The completeness of the states of definite energy, |ελ〉, is specified by their resolution
of the identity ∑

λ

|ελ〉〈ελ| = Î (1.11)

here using a notation corresponding to the case of a discrete spectrum.
At each instant of time a complete description is provided by a state vector, |ψ(t)〉,

thereby defining an operator, the time-evolution operator connecting state vectors at
different times

|ψ(t)〉 = Û(t, t′) |ψ(t′)〉 . (1.12)

Conservation of probability, conservation of the length of a state vector, or its nor-
malized scalar product 〈ψ(t)|ψ(t)〉 = 1, under time evolution, determines the evo-
lution operator to be unitary, U−1(t, t′) = U †(t, t′). The dynamics is given by the
Schrödinger equation

i�
d|ψ(t)〉

dt
= Ĥ |ψ(t)〉 (1.13)

and for an isolated system the evolution operator is thus the unitary operator

Û(t, t′) = e−
i
�

Ĥ(t−t′) . (1.14)

Here we have presented the operator calculus approach to quantum dynamics, the
equivalent path integral approach is presented in Appendix A.

3For a detailed introduction to quantum mechanics we direct the reader to chapter 1 in reference
[1].
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4 1. Quantum fields

In order to describe a physical problem we need to specify particulars, typically in
the form of an initial condition. Such general initial condition problems can be solved
through the introduction of the Green’s function. The Green’s function G(x, t;x′, t′)
represents the solution to the Schrödinger equation for the particular initial condition
where the particle is definitely at position x′ at time t′

lim
t↘t′

ψ(x, t) = δ(x − x′) = 〈x, t′|x′, t′〉 . (1.15)

The solution of the Schrödinger equation corresponding to this initial condition there-
fore depends parametrically on x′ (and t′), and is by definition the conditional prob-
ability density amplitude for the dynamics in question4

ψx′,t′(x, t) = 〈x, t|x′, t′〉 = 〈x|Û(t, t′)|x′〉 ≡ G(x, t;x′, t′) . (1.16)

The Green’s function, defined to be a solution of the Schrödinger equation, satis-
fies (

i�
∂

∂t
− H(−i�∇x,x)

)
G(x, t;x′, t′) = 0 (1.17)

where, according to Eq. (1.3), the Hamiltonian in the position representation, H , is
specified by the position matrix elements of the Hamiltonian

〈x|Ĥ |x′〉 = H(−i�∇x,x) δ(x − x′) . (1.18)

The Green’s function, G, is the kernel of the Schrödinger equation on integral
form (being a first order differential equation in time)

ψ(x, t) =
∫

dx′ G(x, t;x′, t′)ψ(x′, t′) (1.19)

as identified in terms of the matrix elements of the evolution operator by using the
resolution of the identity in terms of the position basis states

〈x|ψ(t)〉 =
∫

dx′〈x|Û(t, t′)|x′〉〈x′|ψ(t′)〉 . (1.20)

The Green’s function propagates the wave function, and we shall therefore also refer
to the Green’s function as the propagator. It completely specifies the quantum
dynamics of the particle.

We note that the partition function of thermodynamics and the trace of the
evolution operator are related by analytical continuation:

Z = Tr e−Ĥ/kT =
∫

dx 〈x|e−Ĥ/kT |x〉 = Tr Û(−i�/kT, 0)

=
∫

dx G(x,−i�/kT ;x, 0) (1.21)

4In the continuum limit the Green’s function is not a normalizable solution of the Schrödinger
equation, as is clear from Eq. (1.15).
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1.2. N-particle system 5

showing that the partition function is obtained from the propagator at the imaginary
time τ = −i�/kT . The formalisms of thermodynamics, i.e. equilibrium statistical
mechanics, and quantum mechanics are thus equivalent, a fact we shall take advan-
tage of throughout. The physical significance is the formal equivalence of quantum
and thermal fluctuations.

Quantum mechanics can be formulated without the use of operators, viz. using
Feynman’s path integral formulation. In Appendix A, the path integral expressions
for the propagator and partition function for a single particle are obtained. Various
types of Green’s functions and their properties for the case of a single particle are
discussed in Appendix C, and their analytical properties are considered in Appendix
D.

1.2 N -particle system

Next we consider a physical system consisting of N particles. If the particles in an
assembly are distinguishable, i.e. different species of particles, an orthonormal basis
in the N -particle state space H(N) = H1 ⊗ H2 ⊗ · · · ⊗ HN is the (tensor) product
states, for example specified in terms of the momentum quantum numbers of the
particles

|p1,p2, . . . ,pN 〉 ≡ |p1〉 ⊗ |p2〉 ⊗ · · · ⊗ |pN 〉 ≡ |p1〉|p2〉 · · · |pN 〉 . (1.22)

We follow the custom of suppressing the tensorial notation.
Formally everything in the following, where an N -particle system is considered,

is equivalent no matter which complete set of single-particle states are used. In prac-
tice the choice follows from the context, and to be specific we shall mainly explicitly
employ the momentum states, the choice convenient in practice for a spatially trans-
lational invariant system.5 These states are eigenstates of the momentum operators

p̂i |p1,p2, . . . ,pN 〉 = pi |p1,p2, . . . ,pN 〉 , (1.23)

where tensorial notation for operators are suppressed, i.e.

p̂i = Î1 ⊗ · · · Îi−1 ⊗ p̂i ⊗ Îi+1 ⊗ · · · ÎN , (1.24)

each operating in the one-particle subspace dictated by its index. In particular the
N -particle momentum states are eigenstates of the total momentum operator

P̂N =
N∑

i=1

p̂i (1.25)

5In the next sections we shall mainly use the momentum basis, and refer in the following to
the quantum numbers labeling the one-particle states as momentum, although any complete set
of quantum numbers could equally well be used. The N-tuple (p1,p2, . . . , pN ) is a complete
description of the N-particle system if the particles do not posses internal degrees of freedom. In
the following, where we for example have electrons in mind, we suppress for simplicity of notation
the spin labeling and simply assume it is absorbed in the momentum labeling. If the particles
have additional internal degrees of freedom, such as color and flavor, these are included in a similar
fashion. If more than one type of species is to be considered simultaneously the species type, say
quark and gluon, must also be indicated.
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6 1. Quantum fields

corresponding to the total momentum eigenvalue

P =
N∑

i=1

pi . (1.26)

The position representation of the momentum states is specified by the plane wave
functions, Eq. (1.5), the scalar product of the momentum states and the analogous
N -particle states of definite positions being

ψp1,...,pN (x1, . . . ,xN ) = 〈x1,x2, . . . ,xN |p1,p2, . . . ,pN 〉 =
N∏

i=1

〈xi|pi〉

=
(

1
(2π�)3/2

)N

e
i
�
p1·x1 e

i
�
p2·x2 · · · e

i
�
pN ·xN . (1.27)

1.2.1 Identical particles

For an assembly of identical particles a profound change in the above description
is needed. In quantum mechanics true identity between objects are realized, viz.
elementary particle species, say electrons, are profoundly identical, i.e. there exists
nothing in Nature which can distinguish any two electrons. Identical particles are in-
distinguishable. States which differ only by two identical particles being interchanged
are thus described by the same ray.6 As a consequence of their indistinguishability,
assemblies of identical particles are described by states which with respect to inter-
change of pairs of identical particles are either antisymmetric or symmetric

|p1,p2, . . . ,pN 〉 = ± |p2,p1, . . . ,pN 〉 , (1.28)

this leaving the probability for a set of momenta of the particles, P (p1,p2, . . . ,pN ), a
function symmetric with respect to interchange of any pair of the identical particles.

A word on notation: the particle we call the first particle is in the momentum
state specified by the first argument, and the particle we call the Nth particle is
in the momentum state specified by the Nth argument. Particles whose states are
symmetric with respect to interchange are called bosons , and for the antisymmetric
case called fermions.7

6The quantum state with all of the electrons in the Universe interchanged will thus be the same
as the present one. A radical invariance property of systems of identical particles!

7Quantum statistics and the spin degree of freedom of a particle are intimately connected as
relativistic quantum field theory demands that bosons have integer spin, whereas particles with
half-integer spin are fermions. This so-called spin-statistics connection seems in the present non-
relativistic quantum theory quite mysterious, i.e. unintelligible. It only gets its explanation in
the relativistic quantum theory, which we usually connect with high energy phenomena, where for
any particle relativity, through Lorentz invariance, requires the existence of an anti-particle of the
same mass and opposite charge (some neutral particles, such as the photon, are their own anti-
particle). Then, in fermion anti-fermion pair production the particles must be antisymmetric with
already existing particles as unitarity, i.e. conservation of probability, requires such a minus sign
[2]. Historically, the exclusion principle, which is a direct consequence of Fermi statistics, was
discovered by Pauli before the advent of relativistic quantum theory as a vehicle to explain the
periodic properties of the elements. Pauli was also the first to show that the spin-statistics relation
is a consequence of Lorentz invariance, causality and energy and norm positivity.
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1.2. N-particle system 7

Any N -particle state |p1,p2, . . . ,pN 〉 can be mapped into a state which is either
symmetric or antisymmetric with respect to interchange of any two particles. To
obtain the symmetric state we simply apply the symmetrization operator Ŝ which
symmetrizes an N -particle state according to

Ŝ |p1,p2, . . . ,pN 〉 =
1

N !

∑
P

|pP1
〉|pP2

〉 · · · |pPN
〉 (1.29)

and the antisymmetrization operator Â antisymmetrizes according to

Â |p1,p2, . . . ,pN 〉 =
1

N !

∑
P

(−1)ζP |p
P1
〉|p

P2
〉 · · · |p

PN
〉 . (1.30)

The summations are over all permutations P of the particles. Permutations form
a group, and any permutation can be build by successive transpositions which only
permute a pair. In the case of antisymmetrization, each term appears with the sign
of the permutation in question

sign(P ) =
∏

1≤i<j≤N

j − i

Pj − Pi
. (1.31)

We have written this in terms of the number ζP which counts the number of trans-
positions needed to build the permutation P , since sign(P ) = (−1)ζP .

If the single-particle state labels in the N -particle state to be symmetrized on the
left in Eq. (1.29) are permuted, the same symmetrized state results, since if P ′ can
be any of the N ! permutations, then P ′P for fixed permutation P will run through
them all, Ŝ |p

P1
,p

P2
, . . . p

PN
〉 = Ŝ |p1,p2, . . . ,pN 〉.

We note that the sign of a product of permutations, Q = P ′P , equals the product
of the signs of the two permutations, sign(Q) = sign(P ′) ·sign(P ), and a permutation
and its inverse have the same sign (owing to their equal number of transpositions),
ζP−1 = ζP . Antisymmetrization of a permuted state gives the same antisymmetric
state multiplied by the sign of the permutation permuting the original N -particle
state since

Â |p
P1

,p
P2

, . . . p
PN

〉 =
1

N !

∑
P ′

(−1)ζP ′ |p
Q1

〉|p
Q2

〉 · · · |p
Q N

〉 (1.32)

and as P ′ runs through all the permutations so does Q = P ′P , and therefore

Â |p
P1

,p
P2

, . . . p
PN

〉 = (−1)ζP
1

N !

∑
Q

(−1)ζQ |p
Q1

〉|p
Q2

〉 · · · |p
Q N

〉

= (−1)ζP Â |p1,p2, . . . ,pN 〉 . (1.33)

Therefore, if any two single-particle states are identical, the antisymmetrized state
vector equals the zero vector, since the two states obtained by permuting the two
identical labels are identical and yet upon antisymmatrization they differ by a minus
sign, i.e. Pauli’s exclusion principle for fermions: no two fermions can occupy the
same state.
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8 1. Quantum fields

Further, according to Eq. (1.33), applying the antisymmetrization operator twice

Â2 |p1,p2, . . . ,pN 〉 = Â 1
N !

∑
P

(−1)ζP |p
P1
〉|p

P2
〉 · · · |p

PN
〉

=
1

N !

∑
P

(−1)ζP (−1)ζP Â |p1,p2, . . . ,pN 〉

= Â |p1,p2, . . . ,pN 〉 (1.34)

gives the same state as applying it only once, i.e. the symmetrization operators are
projectors, Â2 = Â, Ŝ2 = Ŝ. The presence of the factor 1/N ! in the definitions,
Eq. (1.29) and Eq. (1.30), is thus there to ensure the operators are normalized pro-
jectors. Representing mutually exclusive symmetry properties, they are orthogonal
projectors, their product is the operator that maps any vector onto the zero vector

Â Ŝ = 0̂ = Ŝ Â (1.35)

since symmetrizing an antisymmetric state, or vice versa, gives the zero vector.
The symmetrization operators are hermitian, Â† = Â, Ŝ† = Ŝ, as verified for

example for Â by first noting that according to the definition of the adjoint operator

〈p1, . . . ,pN |Â†|p′
1,p

′
2, . . . ,p′

N 〉 = 〈p′
1, . . . ,p′

N |Â|p1,p2, . . . ,pN〉∗

=
1

N !

∑
P

(−1)ζP 〈p′
1|pP1

〉∗ · · · 〈p′
N |pPN

〉∗

=
(−1)ζS

N !
〈p

S1
|p′

1〉 · · · 〈p
SN

|p′
N 〉 (1.36)

the matrix element being nonzero only if the set {p′
i}i=1,...,N is a permutation of the

set {pi}i=1,...,N , S being the permutation that brings the set {pi}i=1,...,N into the set
{p′

i}i=1,...,N , p
Si

= p′
i. Permuting both sets of indices by the inverse permutation

S−1 of S, and using that ζS−1 = ζS , we get

〈p1, . . . ,pN |Â†|p′
1,p

′
2, . . . ,p′

N 〉 =
1

N !
(−1)ζS −1 〈p1|p′

S−1
1

〉 · · · 〈pN |p′
S−1

N

〉

=
1

N !

∑
P

(−1)ζP 〈p1, . . . ,pN |p′
P1

, . . . ,p′
PN

〉

= 〈p1, . . . ,pN |Â|p′
1, . . . ,p′

N 〉 . (1.37)

Exercise 1.1. Show that the adjoint of a product of linear operators A and B is the
product of their adjoint operators in opposite sequence

(AB)† = B† A† (1.38)

and generalize to the case of an arbitrary number of operators.
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1.2. N-particle system 9

Exercise 1.2. The vector space of state vectors, the kets, and the dual space of
linear functionals on the state space, the bras, are isomorphic vector spaces, which
we express by the adjoint operation, |ψ〉† = 〈ψ| and 〈ψ|† = |ψ〉. This mapping
is anti-linear and isomorphic, and we use the same symbol as for the adjoint of an
operator.

Show that for arbitrary state vectors and operators on the state space the rela-
tionship (X̂|ψ〉)† = 〈ψ|X̂†. An operator being its own adjoint, X̂† = X̂, is said to
be a hermitian operator and its eigenvalues are real, such operators being of primary
importance in quantum mechanics.

Exercise 1.3. Show that the symmetrization operator, Ŝ, is hermitian.

The linear operators Ŝ and Â project any state onto either of the two orthogonal
subspaces of symmetric or antisymmetric states.8 The state space for a physical
system consisting of N identical particles is thus not H(N), the N -fold product of
the one-particle state space, but either the symmetric subspace, B(N), for bosons,
or antisymmetric subspace, F (N), for fermions, obtained by projecting the states of
H(N) by either type of symmetrization operator depending on the statistics of the
particles in question.

1.2.2 Kinematics of fermions

Let us introduce the orthogonal, normalized up to a phase factor, antisymmetric
basis states in the antisymmetric N -particle state space F (N)

|p1 ∧ p2 ∧ · · · ∧ pN 〉 ≡
√

N ! Â |p1,p2, . . . ,pN 〉

=
1√
N !

∑
P

(−1)ζP |p
P1
〉 ⊗ |p

P2
〉 ⊗ · · · ⊗ |p

PN
〉

=
1√
N !

∑
P

(−1)ζP |p
P1
〉|p

P2
〉 · · · |p

PN
〉

=
1√
N !

∑
P

(−1)ζP |p
P1

,p
P2

, . . . ,p
PN

〉 . (1.39)

We demonstrate that they are orthogonal by using the properties of the antisym-
metrization operator (we first for simplicity of the Kronecker function assume box
normalization, i.e, the momentum values are discrete)

〈p1 ∧ · · · ∧ pN |p′
1 ∧ · · · ∧ p′

N 〉 = N !〈p1, . . . ,pN |Â†Â|p′
1, . . . ,p′

N 〉

= N !〈p1, . . . ,pN |Â|p′
1, . . . ,p′

N 〉
8Only for the case of two particles do the two subspaces of symmetric and antisymmetric states

span the original state space, H(2) = H ⊗ H. In general, the other subspaces for the case of more
than two particles do not seem to be state spaces for systems of identical particles.
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10 1. Quantum fields

= 〈p1, . . . ,pN |
∑
P

(−1)ζP |p′
P1

, . . . ,p′
PN

〉

=

⎧⎨
⎩

(−1)ζS {p′}i ≡ {p}i

0 otherwise
(1.40)

where {p′
i}i=1,...,N ≡ {pi}i=1,...,N is short for the labels {p′

i}i=1,...,N being a permuta-
tion of the labels {pi}i=1,...,N , and S the permutation that takes the set {pi}i=1,...,N

into {p′
i}i=1,...,N , p

Si
= p′

i. Or simply in words, only if the primed set of momenta
is a permutation of the unprimed set is the scalar product of the states nonzero (we
have of course assumed that all momenta are different since otherwise for fermions
the vector is the zero-vector).

Incidentally we have

〈p1 ∧ p2,∧ · · · ∧ pN | p′
1,p

′
2, ..,p

′
N 〉 =

⎧⎨
⎩

1√
N !

(−1)ζS {p′}i ≡ {p}i

0 otherwise
(1.41)

expressing that additional permutations are redundant, for example an additional an-
tisymmetrization is redundant as expressed by the second equality sign in Eq. (1.40),
or equivalently that the symmetrization operators are hermitian projectors.

The scalar product of antisymmetric states is the determinant of the N × N
matrix with entries 〈pi|p′

j〉
〈p1 ∧ · · · ∧ pN |p′

1 ∧ · · · ∧ p′
N 〉 = det(〈pi|p′

j〉)

=
∑
P

(−1)ζP 〈p1|p′
P1
〉 · · · 〈pN |p′

PN
〉 , (1.42)

the Slater determinant.
In the operator calculus perturbation theory for a single particle, the resolution

of the identity plays a crucial efficient role. For an assembly of identical particles
this role will be taken over by the commutation rules for the quantum fields we shall
shortly introduce. The resolutions of the identity on the symmetrized subspaces
reflect the redundancy of antisymmetrized or symmetrized states. Though not of
much practical use, we include them for completeness (the resolution of the identity
makes a short appearance in Section 3.1.1). The resolution of the identity on the
antisymmetric state space can be written in terms of the N -state identity operator
since the identity operator commutes with any operator

1 = Â Î(N) Â = Â
(
Î1 ⊗ Î2 ⊗ Î3 ⊗ · · · ⊗ ÎN

)
Â†

= Â
∑

p1,...,pN

|p1〉〈p1| ⊗ |p2〉〈p2| ⊗ · · · ⊗ |pN 〉〈pN | Â†

= Â
∑

p1,...,pN

|p1,p2, . . . ,pN 〉〈p1,p2, . . . ,pN | Â†

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-18800-5 - Quantum Field Theory of Non-Equilibrium States
Jorgen Rammer
Excerpt
More information

http://www.cambridge.org/9780521188005
http://www.cambridge.org
http://www.cambridge.org

