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Most scholars think of David Hilbert’s program as the most demanding
and ideologically motivated attempt to provide a foundation for mathe-
matics, and, because they see technical obstacles in the way of realizing
the program’s goals, they regard it as a failure. Against this view,
Curtis Franks argues that Hilbert’s deepest and most central insight
was that mathematical techniques and practices do not need grounding
in any philosophical principles. He weaves together an original histor-
ical account, philosophical analysis, and his own development of the
meta-mathematics of weak systems of arithmetic to show that the true
philosophical significance of Hilbert’s program is that it makes the auton-
omy of mathematics evident. The result is a vision of the early history of
modern logic that highlights the rich interaction between its conceptual
problems and its technical development.
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The one and what I said about it make two,

and two and the original one make three.

If we go on in this way,

then even the cleverest mathematician can’t tell
where we’ll end,

much less an ordinary man.

If by moving from nonbeing to being we get to three,
how far will we get if we move from being to being?
Better not to move, but to let things be!
Chuang Tzu, The Inner Chapters
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Preface

When I decided to bundle my recent historical, philosophical, and logical
research together into a book, I considered two different approaches. One
approach was to try to represent David Hilbert’s foundational program
exhaustively, to let my own findings simply shape the re-telling of a fairly
familiar story. Another approach — the one that I ultimately preferred —
was to center the book around what I think are both the most important
and most overlooked aspects of Hilbert’s program. There is no lack of high
quality writing about Hilbert, nor of high quality development of his sci-
entific innovations, but there seems to me to be a glaring oversight of one
truly unique aspect of Hilbert’s thought. So this book is a modest attempt
to isolate, explain, and develop a single strain of Hilbert’s philosophy. If the
book inspires new interest and appreciation of Hilbert, then it has served its
purpose.

The core of the book grew out of my doctoral research at the Uni-
versity of California’s Department of Logic and Philosophy of Science in
Irvine. The title of my doctoral thesis, “Mathematics speaks for itself,”
was a double entendre. It was meant to suggest two distinct but related
themes. The first theme is that questions about mathematics that arise
in philosophical reflection — questions about how and why its methods
work — might be best addressed mathematically. I believe that this is so,
and I claim that David Hilbert held the same view. In Chapter 2, I explain
that Hilbert’s program was primarily an effort to demonstrate that mathe-
matics could answer questions about how its own methods work. Hilbert
thought that if he could succeed at this, then he would have carved out
a privileged position for mathematics among the sciences. Unlike other
ways of knowing, the validity of ordinary mathematical methods would
be seen to be independent of any philosophical theories of knowledge, as
autonomous.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521183895

Cambridge University Press

978-0-521-18389-5 - The Autonomy of Mathematical Knowledge: Hilbert’s Program Revisited
Curtis Franks

Frontmatter

More information

X Preface

The second theme arises out of the first. Once one sees mathematics
potentially providing its own foundations, one faces questions about the
available ways for it to do so. The two most poignant issues are how a for-
mal theory should refer to itself and how properties abour a theory should
be represented within that theory. I claim that standard answers to these
questions are not sufficiently free from extra-mathematical, philosophical
assumptions to speak fully to Hilbert’s vision. In Chapter 3, I examine
Hilbert’s own attempt to settle these questions and explain why his attempt
failed by his own standards. Then I turn to Jacques Herbrand’s contribution
to Hilbert’s program and discuss the partial progress he made to Hilbert’s
goal of mathematical autonomy. Herbrand’s work is known primarily for its
purely mathematical accomplishments. I do not know of any detailed study
on his philosophical perspective. However, a close look at his methods
and remarks about the significance of his results reveals that he had a rich
philosophical perspective, close in spirit to Hilbert’s. In fact he viewed his
own [1930a] Fundamental Theorem as a contribution to Hilbert’s project
of formulating questions of metatheory purely mathematically, and he even
recognized the need for additional techniques of arithmetization (of the sort
Godel would later supply) to complement his own.

In Chapter 4, I rephrase the discussion in terms due to Solomon Fefer-
man. It turns out that his notion of intensionality is precisely what a
mathematical study of mathematics — in the spirit of Hilbert’s original
vision — requires. I examine the extent to which G6del’s and Herbrand’s
techniques of arithmetization are intensionally correct and suggest that a
certain combination of the two works much better than either one on its
own. Specifically, a Godel-style encoding of the formulations of provabil-
ity and consistency that result from Herbrand’s theorem returns formulas
that can be relativized to the computational strength of any arithmetical sys-
tem. As a result one is able to pose questions about a system’s metatheory
to that system always in a way such that the system can understand the
questions.

As an illustration of the applicability of these techniques, in Chapter 5
I apply the point of view from previous chapters to a specific problem in
the philosophy of mathematics: whether the fact that a version of Godel’s
second incompleteness theorem for Robinson’s arithmetical theory Q can
be understood as showing that O cannot prove its own consistency. It is
worth mentioning the chapter’s focus on weak mathematical systems. I
have often heard philosophers bemoan the attention that mathematical logic
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Preface xi

research, especially in recent years, gives to weak theories. My focus is
on bounded and induction-free fragments of arithmetic, which are weak
systems by any standard. Thus I must explain myself. I am in full sympa-
thy with philosophers who see foundational studies as missing an essential
point when focused solely on such weak systems. Weak fragments of arith-
metic are not the theories that mathematicians ordinarily use, so it seems
at first odd to suggest that a study of these theories can turn up “a foun-
dation of mathematics.” A singular focus on weak arithmetics appears to
most philosophers just as the obscure preoccupations of his day appeared
to Laurence Sterne, as “common-place infirmity of the greatest mathemati-
cians! working with might and main at the demonstration, and so wasting all
their strength upon it, that they have none left in them to draw the corollary,
to do good with” (Sterne [1759—67], pp. 87-8).

But I propose to draw that corollary. In the spirit of Hilbert’s program,
my project is not to provide epistemological foundations for the strongest
system I can, starting from the bottom up, only to stop there and advocate
a restriction of mathematical methods to those so founded. Rather, with
Hilbert, I am interested in a system’s ability to refer to itself and thereby to
demonstrate properties that it has. Since a system’s ability to perform these
tasks depends on its strength, a precise study of the phenomenon involves
studying systems of different strengths. Weak arithmetic theories admit
different arithmetization schemes and therefore perform these tasks in dif-
ferent ways. Consequently they are the natural place to turn to investigate
how mathematics speaks for itself.

As I said, the strain of Hilbert’s thought that I isolate and develop in this
book is not ordinarily associated with Hilbert’s program. Nevertheless, I
believe that once it is recovered, it complements many other, well-known
features of Hilbert’s thought. But more glaringly, I believe that it runs
directly counter to the ideological position that is often, but erroneously,
attributed to Hilbert. In Chapters 1 and 6 I focus on the significance of
Hilbert’s anti-foundational stance, and try to rethink how his philosophi-
cal ideas fit with the historical events that provided their context as well as
how they have influenced contemporary philosophy of mathematics.
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