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Groups and graphs

Sections 1 and 2 collect together the basic definitions on group actions
and graphs, and Section 3 introduces the concept of a graph of groups.
Section 4 then describes the structure of a group acting on a tree in terms
of the fundamental group of a graph of groups. Section 5 lists some
examples of trees arising in nature. Section 6 motivates the main argument
of Section 7, which shows the converse of the structure theorem for groups
acting on trees, that is, the fundamental group of a graph of groups acts
on a tree; some applications in combinatorial group theory are then given.
This is continued in Sections 8 and 10, where some important theorems
on free groups and free products are proved, while Section 9 gives the
structure theorem for groups acting on connected graphs.

1 Groups

The purpose of this section is to recall a list of basic definitions
which will be needed throughout.

1.1 Definitions. Let S be a set.

We write S' for S x {1, — 1}, and denote an element (s, &) by s*.

By a word in S*' we mean a finite sequence in S*', possibly empty. The
word (s%,...,str) will usually be abbreviated s --- s

Let W(S) be the set of all words in S*'. There is a binary operation
W(S) x W(S)— W(S),(w,w )~ ww, given by concatenation, and a unary
operation W(S)— W(S), wow™1, given by (5% ---s&) "L =5, ...

For any function «: S — G, s> as, there is induced a function a: W(S) - G,
S-St (s ) e s, )t

Let R be a subset of W(S). We say G has a presentation with generating

1
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2 I Groups and graphs

set S and relation set R, and write G = { S|R), if the following holds: there
is specified a function a:S — G such that a(w) =1 for all weR, having the
property that for any group H and function §:5 — H such that f{w)=1
for all weR, there exists a unique group homomorphism ¢:G — H such
that 8 = ¢a. Even though a need not be injective, we usually suppress «
and use the same symbol to denote an element of S and its image in G,
hoping that the meaning is clear from the context. In essence, S can be
thought of as a family of elements of G, possibly having repetitions.

Variations of the prose are: (S|R) presents G; G has a presentation
with generators se$ and relators reR, or relations r = 1, reR. In the latter
formulation it is often convenient to write a relation of the form wyw, =1
as w; =w, L.

Given any subset R of W(S) there exists a group presented by {S{R);
to prove this, one considers the intersection of all equivalence relations
induced on W(S) by the various possible f’s, and takes as G the set of
equivalence classes, with multiplication induced by concatenation.

Any two groups presented by (S|R) are isomorphic, and the
isomorphism is unique if the family S is respected.

Conversely, G always has some presentation, for example { G|R ) where
R={((a, 1),(b, 1), (ab, — 1))eW(G)|a, beG}; we refer to the elements of
the latter set as the relations for G.

In specific cases, it is usual to list the elements of S and R, casually
omitting the set brackets. We also use exponents to indicate repetition.
For example, for any n> 1, (s[s") presents the cyclic group C, of order
n, and {r,s|r? 2 (rs)"> presents the dihedral group D, of order 2n. This
extends by analogy to n = oo, with C, = {s|@), Do, = {r,s[r?,s*).

The rank of G, denoted rank (G), is the minimum number of generators
of G; that is, the least cardinal n such that there exists a presentation
{S|R) of G with |S|=n.

For example, the only group of rank zero is the trivial group G=1.

For another example, for any set S, if R={w?|weW(S)}, then
{S|R) has the structure of a vector space of dimension |S| over the field
of two elements; as this cannot be generated by fewer than |S] elements,
its rank is |S|.

We say that G is a free group if it has a presentation of the form {S| ).
In this event, G is said to be freely generated by S, and that S is a free
generating set of G. The previous example shows that S| = rank (G). For
any cardinal n, we write F, for the free group of rank n.

If S is a subset of G, we write (S for the subgroup of G generated by
S, that is the smallest subgroup of G containing S. 1
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1.2 Definitions. By a G-set X we mecan a set given with a function
G x X - X, {g,x)>gx, such that 1x = x for all xeX, and g(g'x) =(gg')x
for all g,g'eG, xeX. This is equivalent to specifying a group homo-
morphism from G to Sym X, the group of all permutations of X, written
on the left. We say also that G acts on X, and that there is a G-action
on X.

For example, G is a G-set under left multiplication; more generally, if
H is any subgroup of G then the set of right cosets, G/H = {xH|xeG}, is
a G-set with G-action given by g(xH) = (gx)H. We denote the cardinal of
this set by (G:H), called the index of H in G.

For another example, G is a G-set under left conjugation, given by
Ix =gxg~ L.

If X;,iel, is a family of G-sets then the disjoint union ieVIX ; is a G-set,
as is the Cartesian product [ ] X;, where G is said to act diagonally.

iel

A function a:X,—> X, between G-sets is said to be a G-map if
a(gx) = g(ax) for all ge G, xe X . We say X, X, are G-isomorphic, denoted
X, ~ X,, if there exists a bijective G-map from one to the other.

By a right G-set X we mean a set given with a function X x G- X,
{x, g)— xg, such that x1 = x for-all xe X, and (xg)g’ = x(gg’) for all g,¢' G,
xeX. This is equivalent to X being a G-set with G-action gx = xg 1. For
example, we have right conjugation x* =g 'xg. &

1.3 Definitions. Let X be a G-set.

Let xeX. By the G-stabilizer of x we mean the subgroup G, =
{geGlgx = x} of G; if P is any subset or element of G, we say that x is
stabilized by P, or is P-stable. If geG, then G, = ?G,, where for a subgroup
H of G, we write °H and HY for the left conjugate and right conjugate
gHg™ 1,9~ ' Hg, respectively.

We say that G acts trivially if gx = x for all geG, xeX.

We say that X is a G-free G-set if G, =1 for all xeX. For example, if
S is a set with trivial G-action then G x S is G-free.

Since G acts on the set of subsets of X with gX' = {gx|xeX'} for
geG, X' < X, this terminology extends to subsets of X. If X’ is G-stable
then we say that X' is a G-subset of X.

Similarly, G acts on the set of finite sequences x,,...,x, in X, so the
notation applies here, and G,,, ., =G, Nn---nG,, .

For xeX, the G-orbit of x is Gx = {gx|ge G}, a G-subset of X which is
G-isomorphic to G/G, with gxeGx corresponding to gG,eG/G,.

By the quotient set for the G-set X, we mean G\X = {Gx|xe X}, the set
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4 I Groups and graphs

of G-orbits; there is a natural map X — G\ X, x> Gx. If G\ X is finite we
say that X is G-finite.

By a G-transversal in X we mean a subset S of X which meets each
G-orbit exactly once, so the composite S € X — G\ X is bijective. Then X
is G-isomorphic to s\g{(S G/G, with gGses\e/S G/G, corresponding to gse X, for

all geG, seS. Hence X is the G-set presented on the generating set S with
relations saying that s is G,-stable for each seS. 1

1.4 Remarks. (i) Notice we have a structure theorem for G-sets, which
says that a G-set is specified up to G-isomorphism by a G-transversal and
the G-stabilizers of the elements of the G-transversal.

For example, a G-set is G-free if and only if it is a disjoint union of
copies of G, or equivalently, of the form G x S.

(ii) If «: X — Y is a map of G-sets then G, = G,, for all xeX, and if a is
injective then G, = G,, for all xeX. For example, the only G-sets which
have G-maps to free G-sets are the free G-sets.

(iii) Conversely, suppose X, Y, are G-sets, and for each xe X, G, stabilizes
an element of Y. Then we can choose any G-transversal S in X and
construct a function «:S — Y such that G, = G for all seS. Now o extends
to a well-defined G-map X — Y, gs—ga(s). |

2 Graphs

We now come to another list of basic concepts, this time
somewhat less standard.

2.1 Definitions. By a G-graph (X,V,E,1,7) we mean a nonempty G-set
X with a specified nonempty G-subset V, its complement E= X — V, and
two G-maps 1,7:E— V. In this event we say simply that X is a G-graph.

For any G-subset Y of X we write VY=VAY,EY=EnY If Y is
nonempty, and for each ecEY both ie and te belong to VY, then Y is
said to be a G-subgraph of X.

In particular, VX = V, EX = E. We call V and E the vertex set and edge
set of X, and the elements vertices and edges of X, respectively. The
functions 1,7: E— V are the incidence functions of X.

If e is any edge then ie and te are the vertices incident to e, and are
called the initial and terminal vertices of e, respectively. The definition
allows the possibility that e and te may be equal, in which case e is called
a loop. In almost all our examples the G-map (1, 7):E—V x V will be
injective, and here G, =G, ,,=G,NG,, for all ecE.

1e,te
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For veV, we define star(v)=1"1(v) v 1~ '(v), sometimes called the
neighbourhood of v. The number of elements in star (v) is called the valency
of v; the elements of star (v} are the edges incident to v, either going into v
or going out of v, depending on whether they belong to t~(e) or 17 (e),
respectively, possibly both. The vertices joined to v by an edge are calied
the neighbours of v.

If every vertex of X has finite valency then X is said to be locally finite.

By a geometric realization of X we mean an oriented one-dimensional
CW-complex with V the set of zero-cells and E the set of one-cells with
each edge e starting at ie and finishing at te.

For G-graphs X,Y, a G-graph map o:X —» Y is a G-map such that
UVX)s VY, (EX)S EY, and for each eeEX, afie) = i(xe), a(te) = t(ae).

The terms G-graph isomorphism and G-graph automorphism are then
defined in the natural way.

In all the above phrases, if G is omitted we understand that G =1; in
this way we recover the concepts of graph, subgraph and graph map. Thus
a G-graph may be viewed as a graph given with a homomorphism from
G to its automorphism group.

By the quotient graph G\X we mean the graph (G\X,G\V,G\E,1,7)
where i(Ge) = Gie, T(Ge) = Gre for all GeeG\E; it is straightforward to see
that 7,7 are well-defined. There is then a graph map X - G\ X, x> Gx.

The Cayley graph of G with respect to a subset S of G, denoted X (G, S),
is the G-graph with vertex set G, edge set G x S, and incidence functions
i(g, s) = g, (g, s) = gs for all (g,s)eG x S. This is a G-free G-graph. §

2.2 Examples. (i) If G = (s|s*) = C,, S = {s}, then

€

se se

ste

is a geometric realization of X = X(G, S), where e =(1,5)eG x S = EX. The
quotient graph is

O
which lifts back to a G-transversal

o—
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6 I Groups and graphs

Notice this is not a subgraph, since the terminal vertex is absent.
(i) f G={s|F)>=F,=C,, and S = {s}, then

st sle e se ste s’e

indicates a geometric realization of X = X (G, S) homeomorphic to R, with
e=(1,s)e EX. The quotient graph and G-transversal are as in (i).
(i) If G = <r,s|r?,s%,(rs)*> = Dy, and S = {r,s} then

is a geometric realization of X = X(G, S) where e=(1,r), f =(1,5)eG x S
= EX. The quotient graph is

é

f

which lifts back to a G-transversal

~

(iv) If G=<{s,ri>=F,, and S={s,r}, then Fig. L1 indicates a
geometric realization of X = X(G, S) omitting the arrows. The quotient
graph and G-transversal are essentially as in (iii).
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Fig. L1

v) If G=<{r,s|r%, 2, (rs)*> = D,, then

€ re

sre rsre

srse srsre

is a geometric realization of a G-graph. The quotient graph is

é
o———0

which lifts back to a G-transversal
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8 I Groups and graphs

i) If G=<{r,s|r%, s> =D, then

. " Srse sre o se € re rse PO
indicates a geometric realization of a G-graph homeomorphic to R; the
quotient graph and G-transversal are as in (v). 1

2.3 Definitions. Let X be a graph.

More incidence functions, again denoted 1,1, are defined on EX*' by
setting re! = e, te! =1e, and 1e” ! =1e,te ! =1e for all eeEX. We think
of el,e”! as travelling along e the right way and the wrong way,
respectively.

A path p in X is a finite sequence

) Vo €15V s ers Uy t,€, U,y
where
nz=0,
v;eVX for each ie[0,n],
efcEX* e =v,_,,tef =v; for eachie[l,n].

Incidence functions, still denoted 1, 7, are defined on the set of paths in
X by setting 1p =v,,7p =1v,;p is said to be a path of length n from v, to
Uy, and vg,...,0,,€1,...,8,,€%,...,e" are said to occur in p.

It is customary to abbreviate p to €5,...,ef". If n=0 then p is said to
be empty, and here we must specify vy; if n > 1 the vertices can be recovered
from the abbreviated data.

The inverse of p, denoted p~!, is the path v,, e, ™, v,_y,...,v;,e; *, 0.
If g is a path with 1g = p then in an obvious way we can form a path by
concatenation, denoted p, q.

If for each ie[1,n— 17, {1 5 ¢, * then p is said to be reduced. Notice
that if ef;i=e¢ % for some ie[l,n—1] then e%,...,ef 1 el .. e
is a path of length n— 2 from v, to v,.

We say X is a tree if for any vertices v, w of X there is a unique reduced
path from v to w; this path is then called the X-geodesic from v to w. The
length of the geodesic is called the distance between v and w. For any
subset W of V, by the subtree of X generated by W we mean the subgraph
of X consisting of all edges and vertices which occur in the X-geodesics
between the pairs of elements of W,

A subgraph of X which is a tree is called a subtree of X.

A path p is said to be a closed path at a vertex v if ip=1p=1, and is
said to be a simple closed path if it is nonempty and there are no other
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Graphs 9

repetitions of vertices. Clearly such a path is reduced, and conversely, any
reduced closed path is a (possibly empty) sequence of simple closed paths.
A graph with no simple closed paths is called a forest; equivalently, the
only reduced closed paths are the empty ones.

Two elements of X are said to be connected in X if there exists a path
in X in which they both occur; in this event there is a reduced path in
which they both occur. It is straightforward to show that being connected
in X is an equivalence relation. The equivalence classes of this relation
are called the components of X, and they are subgraphs of X. A
graph with only one component is said to be connected. On VX the
relation of being connected in X is the equivalence relation generated by
{{1e,7e}|ec EX}.

Let E' be a set of edges of X. Write E for EX — E’ and V for the set of
components of the graph X — E obtained from X by removing E. There
is a natural map V- ¥V,v—#, and one can think of © as the equivalence
class of v relative to the equivalence relation on V generated by
{(te,7e)|ecE'}. Let X be the graph with vertex set V, edge set E and
incidence functions 1,7 with e = ie, Te = e for all ecE. There is a map
X - X, x> %, which on V is as above, on E is the identity, and on E’ sends
e to e = Te; this is not a graph map unless E’ is empty. We say X is the
graph obtained from X by contracting all the edges in E/, and call X - X
the contracting map.

For example, if E' = EX then E= ¢ and X is a graph with no edges,
and vertex set the set of components of X. This provides terminology
which is frequently useful for seeing that a graph is connected.

If X is a G-graph and E’ is a G-subset of EX then X is a G-graph and
X->Xisa G-map. 1

2.4 Example. Let S be a subset of G and X = X(G, S).

Let X be the graph obtained by contracting all the edges of X, and let
X > X,x— X, be the contracting map. Then X is the G-set with one
generator v = 1 and relations gv = gsv for all (g, s)eG x S, that is, sv = v for
all seS. Hence, G, is the subgroup of G generated by S, and the components
of X correspond to cosets gG,eG/G,. Thus X is connected if and only if
S generates G.

It will be shown in Theorem 8.2 that X is a tree if and only if S freely
generates G; see Examples 2.2(ii), (iv). i

2.5 Proposition. A graph is a tree if and only if it is a connected forest.
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Proof. Let X be a tree. Clearly X is connected. Suppose X has a simple
closed path p at some vertex v. Then p and the empty path at v are distinct
reduced paths in X from v to itself, which contradicts uniqueness. Hence
X is a forest.

Conversely, suppose that X is a connected forest. Let v, w be vertices
of X. Since X is connected there is a reduced path from v to w,
and it remains to show uniqueness. Suppose that p=ef,...,e2" and
q=f",...,f™ are reduced paths from v to w. Then p,q~'=
e,..., e [t ..., f{™is a closed path at v. If p,q~ ! is reduced then it
must be empty so clearly p=gq. If p,g~ " is not reduced then n = 1,m>1
and e = f" Here €%,...,er-} and f7.,...,fm! are reduced paths
from v to teir-1; by 1nduct10n on n, these paths are equal. Thus p=g as
desired. 1

We now verify the existence of a very important type of transversal
already illustrated in Example 2.2.

2.6 Proposition. If X is a G-graph and G\X is connected then there exist
subsets Yo = Y S X such that Y is a G-transversal in X, Y, is a subtree of
X, VY =VY, and for each eeEY,1ecVY =VY,.

We say Y is a fundamental G-transversal in X, with subtree Y.

Proof. Write X = G\X and x = Gx for all xeX.

Choose a vertex v, of X. By Zorn’s Lemma we can choose a maximal
subtree Y, of X containing v, such that the composite Yo <= X —»X is
injective. Let Y, denote the image of Y,. We claim that VY, = VX. If not,
since X is connected, any vertex in Y, is connected to any vertex in X — Y,
by a path in X, so some edge & of X has one vertex 7 in Y, and one vertex
in X — Y,. Here # comes from an element v of V'Y, and ¢ from an edge
e of X; since v lies in the same orbit as a vertex of e, it is a vertex of ge
for some geG, and by replacing e with ge we may further assume that v
is a vertex of e. Let w be the other vertex of e. Notice ¢,w do not lie in
Y,, since their images do not lie in Y,. But Y,u{e, w} contradicts the
maximality of Y,. This proves the claim that VY, =VX.

For each edge ¢ in EX — EY,, 1é comes from a unique vertex of Y, and
as before we can assume re€ Y,. Adjoining the resulting edges to Y, gives
a subset Y of X such that the composite Y < X — X is bijective and if
ecEY then weeY. 1
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