Pref	face		page xv
Ack	now	vledgments	xix
I	A B	Preview A Brief Historical Perspective of Transport Phenomena in Chemical Engineering The Nature of the Subject A Brief Description of the Contents of This Book	I 1 2 4
		tes and References	11
2	Ba A B C D E F G H I J K	sic Principles The Continuum Approximation I Foundations 2 Consequences Conservation of Mass – The Continuity Equation Newton's Laws of Mechanics Conservation of Energy and the Entropy Inequality Constitutive Equations Fluid Statics – The Stress Tensor for a Stationary Fluid The Constitutive Equation for the Heat Flux Vector – Fourier's Law Constitutive Equations for a Flowing Fluid – The Newtonian Fluid The Equations of Motion for a Newtonian Fluid – The Navier–Stokes Equation Complex Fluids – Origins of Non-Newtonian Behavior Constitutive Equations for Non-Newtonian Fluids	I3 I3 I4 I5 I8 25 31 36 37 42 45 49 52 59 65
	L	 Boundary Conditions at Solid Walls and Fluid Interfaces I The Kinematic Condition 2 Thermal Boundary Conditions 3 The Dynamic Boundary Condition Further Considerations of the Boundary Conditions at the 	67 68 69
		 Interface Between Two Pure Fluids – The Stress Conditions Generalization of the Kinematic Boundary Condition for an Interface The Stress Conditions The Normal-Stress Balance and Capillary Flows The Tangential-Stress Balance and Thermocapillary Flows 	74 75 76 79 84

	Ν	The Role of Surfactants in the Boundary Conditions at	
		a Fluid Interface	89
		tes and Reference	96
	Pro	oblems	99
3	Unidirectional and One-Dimensional Flow and Heat Transfer		
	Pr	oblems	110
	А	Simplification of the Navier–Stokes Equations for Unidirectional	
		Flows	113
	В	Steady Unidirectional Flows – Nondimensionalization and	
		Characteristic Scales	115
	С	Circular Couette Flow – A One-Dimensional Analog to	
	_	Unidirectional Flows	125
	D	Start-Up Flow in a Circular Tube – Solution by Separation	
	-	of Variables	135
	E F	The Rayleigh Problem – Solution by Similarity Transformation	142 148
	г G	Start-Up of Simple Shear Flow Solidification at a Planar Interface	148
	Н	Heat Transfer in Unidirectional Flows	152
	п	I Steady-State Heat Transfer in Fully Developed Flow through a	157
		Heated (or Cooled) Section of a Circular Tube	158
		2 Taylor Diffusion in a Circular Tube	166
	I	Pulsatile Flow in a Circular Tube	175
	No	tes	183
	Pro	oblems	185
	Δ	Introduction to Asymptotic Approximations	
4		Introduction to Asymptotic Approximations	204
4	A	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutions	
4		Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutions for High and Low Frequencies	205
4		Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutions for High and Low Frequencies I Asymptotic Solution for $R_{\omega} \ll I$	205 206
4	A	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutions for High and Low Frequencies I Asymptotic Solution for $R_{\omega} \ll I$ 2 Asymptotic Solution for $R_{\omega} \gg I$	205 206 209
4	A B	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutions for High and Low Frequencies I Asymptotic Solution for $R_{\omega} \ll I$ 2 Asymptotic Solution for $R_{\omega} \gg I$ Asymptotic Expansions – General Considerations	205 206 209 216
4	A B C	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutionsfor High and Low FrequenciesIAsymptotic Solution for $R_{\omega} \ll 1$ 2Asymptotic Solution for $R_{\omega} \gg 1$ Asymptotic Expansions – General ConsiderationsThe Effect of Viscous Dissipation on a Simple Shear Flow	205 206 209
4	A B	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutions for High and Low Frequencies 1 Asymptotic Solution for $R_{\omega} \ll 1$ 2 Asymptotic Solution for $R_{\omega} \gg 1$ Asymptotic Expansions – General Considerations The Effect of Viscous Dissipation on a Simple Shear Flow The Motion of a Fluid Through a Slightly Curved Tube – The Dean	205 206 209 216 219
4	A B C D	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutions for High and Low Frequencies 1 Asymptotic Solution for $R_{\omega} \ll 1$ 2 Asymptotic Solution for $R_{\omega} \gg 1$ Asymptotic Expansions – General Considerations The Effect of Viscous Dissipation on a Simple Shear Flow The Motion of a Fluid Through a Slightly Curved Tube – The Dean Problem	205 206 209 216 219 224
4	A B C	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutions for High and Low Frequencies 1 Asymptotic Solution for $R_{\omega} \ll 1$ 2 Asymptotic Solution for $R_{\omega} \gg 1$ Asymptotic Expansions – General Considerations The Effect of Viscous Dissipation on a Simple Shear Flow The Motion of a Fluid Through a Slightly Curved Tube – The Dean Problem Flow in a Wavy-Wall Channel – "Domain Perturbation Method"	205 206 209 216 219
4	A B C D	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutions for High and Low Frequencies 1 Asymptotic Solution for $R_{\omega} \ll 1$ 2 Asymptotic Solution for $R_{\omega} \gg 1$ Asymptotic Expansions – General Considerations The Effect of Viscous Dissipation on a Simple Shear Flow The Motion of a Fluid Through a Slightly Curved Tube – The Dean Problem Flow in a Wavy-Wall Channel – "Domain Perturbation Method" 1 Flow Parallel to the Corrugation Grooves	205 206 209 216 219 224 232
4	A B C D	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutions for High and Low Frequencies 1 Asymptotic Solution for $R_{\omega} \ll 1$ 2 Asymptotic Solution for $R_{\omega} \gg 1$ Asymptotic Expansions – General Considerations The Effect of Viscous Dissipation on a Simple Shear Flow The Motion of a Fluid Through a Slightly Curved Tube – The Dean Problem Flow in a Wavy-Wall Channel – "Domain Perturbation Method" 1 Flow Parallel to the Corrugation Grooves	205 206 209 216 219 224 232 233
4	A B C D E	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutionsfor High and Low Frequencies1122Asymptotic Solution for $R_{\omega} \ll 1$ 2Asymptotic Solution for $R_{\omega} \gg 1$ Asymptotic Expansions – General ConsiderationsThe Effect of Viscous Dissipation on a Simple Shear FlowThe Motion of a Fluid Through a Slightly Curved Tube – The DeanProblemFlow in a Wavy-Wall Channel – "Domain Perturbation Method"1Flow Parallel to the Corrugation Grooves2Flow Perpendicular to the Corrugation Grooves	205 206 209 216 219 224 232 233
4	A B C D E	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutions for High and Low Frequencies 1 Asymptotic Solution for $R_{\omega} \ll 1$ 2 Asymptotic Solution for $R_{\omega} \gg 1$ Asymptotic Expansions – General Considerations The Effect of Viscous Dissipation on a Simple Shear Flow The Motion of a Fluid Through a Slightly Curved Tube – The Dean Problem Flow in a Wavy-Wall Channel – "Domain Perturbation Method" 1 Flow Parallel to the Corrugation Grooves 2 Flow Perpendicular to the Corrugation Grooves Diffusion in a Sphere with Fast Reaction – "Singular Perturbation	205 206 209 216 219 224 232 233 237 242 250
4	A B C D E F	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutions for High and Low Frequencies 1 Asymptotic Solution for $R_{\omega} \ll 1$ 2 Asymptotic Solution for $R_{\omega} \gg 1$ Asymptotic Expansions – General Considerations The Effect of Viscous Dissipation on a Simple Shear Flow The Motion of a Fluid Through a Slightly Curved Tube – The Dean Problem Flow in a Wavy-Wall Channel – "Domain Perturbation Method" 1 Flow Parallel to the Corrugation Grooves 2 Flow Perpendicular to the Corrugation Grooves Diffusion in a Sphere with Fast Reaction – "Singular Perturbation Theory" Bubble Dynamics in a Quiescent Fluid 1 The Rayleigh–Plesset Equation	205 206 209 216 219 224 232 233 237 242 250 251
4	A B C D E F	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutionsfor High and Low Frequencies1121233444545454555677677778788991178999911111111111111111111111111111111212122222333333333333333333 </th <th>205 206 209 216 219 224 232 233 237 242 250</th>	205 206 209 216 219 224 232 233 237 242 250
4	A B C D E F	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutions for High and Low Frequencies 1 Asymptotic Solution for $R_{\omega} \ll 1$ 2 Asymptotic Solution for $R_{\omega} \gg 1$ Asymptotic Expansions – General Considerations The Effect of Viscous Dissipation on a Simple Shear Flow The Motion of a Fluid Through a Slightly Curved Tube – The Dean Problem Flow in a Wavy-Wall Channel – "Domain Perturbation Method" 1 Flow Parallel to the Corrugation Grooves 2 Flow Perpendicular to the Corrugation Grooves Diffusion in a Sphere with Fast Reaction – "Singular Perturbation Theory" Bubble Dynamics in a Quiescent Fluid 1 The Rayleigh–Plesset Equation 2 Equilibrium Solutions and Their Stability 3 Bubble Oscillations Due to Periodic Pressure Oscillations –	205 206 209 216 219 224 233 237 242 250 251 255
4	A B C D E F	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutionsfor High and Low Frequencies112342434445454545556677677777787878788899 <t< th=""><th>205 206 209 216 219 224 232 233 237 242 250 251 255 260</th></t<>	205 206 209 216 219 224 232 233 237 242 250 251 255 260
4	A B C D E F G	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutionsfor High and Low Frequencies1121233434545454545556677777878999 </th <th>205 206 209 216 219 224 232 233 237 242 250 251 255 260 269</th>	205 206 209 216 219 224 232 233 237 242 250 251 255 260 269
4	A B C D E F G	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutions for High and Low Frequencies 1 Asymptotic Solution for $R_{\omega} \ll 1$ 2 Asymptotic Solution for $R_{\omega} \gg 1$ Asymptotic Expansions – General Considerations The Effect of Viscous Dissipation on a Simple Shear Flow The Motion of a Fluid Through a Slightly Curved Tube – The Dean Problem Flow in a Wavy-Wall Channel – "Domain Perturbation Method" 1 Flow Parallel to the Corrugation Grooves 2 Flow Perpendicular to the Corrugation Grooves Diffusion in a Sphere with Fast Reaction – "Singular Perturbation Theory" Bubble Dynamics in a Quiescent Fluid 1 The Rayleigh–Plesset Equation 2 Equilibrium Solutions and Their Stability 3 Bubble Oscillations Due to Periodic Pressure Oscillations – Resonance and "Multiple-Time-Scale Analysis" 4 Stability to Nonspherical Disturbances	205 206 209 216 219 224 232 233 237 242 250 251 255 260 269 282
4	A B C D E F G	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutionsfor High and Low Frequencies1121233434545454545556677777878799 </th <th>205 206 209 216 219 224 232 233 237 242 250 251 255 260 269</th>	205 206 209 216 219 224 232 233 237 242 250 251 255 260 269
5	A B C D E F G No Pro	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutions for High and Low Frequencies 1 Asymptotic Solution for $R_{\omega} \ll 1$ 2 Asymptotic Solution for $R_{\omega} \gg 1$ Asymptotic Expansions – General Considerations The Effect of Viscous Dissipation on a Simple Shear Flow The Motion of a Fluid Through a Slightly Curved Tube – The Dean Problem Flow in a Wavy-Wall Channel – "Domain Perturbation Method" 1 Flow Parallel to the Corrugation Grooves 2 Flow Perpendicular to the Corrugation Grooves Diffusion in a Sphere with Fast Reaction – "Singular Perturbation Theory" Bubble Dynamics in a Quiescent Fluid 1 The Rayleigh–Plesset Equation 2 Equilibrium Solutions and Their Stability 3 Bubble Oscillations Due to Periodic Pressure Oscillations – Resonance and "Multiple-Time-Scale Analysis" 4 Stability to Nonspherical Disturbances	205 206 209 216 219 224 232 233 237 242 250 251 255 260 269 282
	A B C D E F G No Pro	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutions for High and Low Frequencies 1 Asymptotic Solution for $R_{\omega} \ll 1$ 2 Asymptotic Solution for $R_{\omega} \gg 1$ Asymptotic Expansions – General Considerations The Effect of Viscous Dissipation on a Simple Shear Flow The Motion of a Fluid Through a Slightly Curved Tube – The Dean Problem Flow in a Wavy-Wall Channel – "Domain Perturbation Method" 1 Flow Parallel to the Corrugation Grooves 2 Flow Perpendicular to the Corrugation Grooves Diffusion in a Sphere with Fast Reaction – "Singular Perturbation Theory" Bubble Dynamics in a Quiescent Fluid 1 The Rayleigh–Plesset Equation 2 Equilibrium Solutions and Their Stability 3 Bubble Oscillations Due to Periodic Pressure Oscillations – Resonance and "Multiple-Time-Scale Analysis" 4 Stability to Nonspherical Disturbances	205 206 209 216 219 224 232 233 237 242 250 251 255 260 269 282 284
	A B C D E F G Nor Prot Th	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutions for High and Low Frequencies 1 Asymptotic Solution for $R_{\omega} \ll 1$ 2 Asymptotic Solution for $R_{\omega} \gg 1$ Asymptotic Expansions – General Considerations The Effect of Viscous Dissipation on a Simple Shear Flow The Motion of a Fluid Through a Slightly Curved Tube – The Dean Problem Flow in a Wavy-Wall Channel – "Domain Perturbation Method" 1 Flow Parallel to the Corrugation Grooves 2 Flow Perpendicular to the Corrugation Grooves Diffusion in a Sphere with Fast Reaction – "Singular Perturbation Theory" Bubble Dynamics in a Quiescent Fluid 1 The Rayleigh–Plesset Equation 2 Equilibrium Solutions and Their Stability 3 Bubble Oscillations Due to Periodic Pressure Oscillations – Resonance and "Multiple-Time-Scale Analysis" 4 Stability to Nonspherical Disturbances	205 206 209 216 219 224 232 233 237 242 250 251 255 260 269 282 284 294

		2 Lubrication Forces	303
	В	Derivation of the Basic Equations of Lubrication Theory	306
	С	Applications of Lubrication Theory	315
		I The Slider-Block Problem	315
		2 The Motion of a Sphere Toward a Solid, Plane	
		Boundary	320
	D	The Air Hockey Table	325
		1 The Lubrication Limit, $ ilde{R}$ e \ll 1	328
		2 The Uniform Blowing Limit, $p_R^* \gg 1$	332
		a Ře≪l	334
		b Ře≫l	336
	NI-	c Lift on the Disk	345 346
	No	tes blems	346 347
	FIC	blems	547
6	Th	e Thin-Gap Approximation – Films with a Free Surface	355
	А	Derivation of the Governing Equations	355
		I The Basic Equations and Boundary Conditions	355
		2 Simplification of the Interface Boundary Conditions for	
		a Thin Film	359
		3 Derivation of the Dynamical Equation for the Shape Function,	
		$h(\mathbf{x}_s, t)$	360
	В	Self-Similar Solutions of Nonlinear Diffusion Equations	362
	С	Films with a Free Surface – Spreading Films on a Horizontal	
		Surface	367
		I Gravitational Spreading	367
	_	2 Capillary Spreading	371
	D	The Dynamics of a Thin Film in the Presence of van der Waals	
		Forces	376
		I Linear Stability	378
	-	2 Similarity Solutions for Film Rupture	381
	Е	Shallow-Cavity Flows	385 386
		I The Horizontal, Enclosed Shallow Cavity	391
		2 The Horizontal Shallow Cavity with a Free Surface a Solution by means of the classical thin-film analysis	392
		b Solution by means of the method of domain perturbations	396
		c The end regions	401
		3 Thermocapillary Flow in a Thin Cavity	404
		a Thin-film solution procedure	410
		b Solution by domain perturbation for $\delta = I$	413
	No	tes	418
	Pro	blems	418
-	~		42.0
7		eeping Flow – Two-Dimensional and Axisymmetric Problems	429
	A	Nondimensionalization and the Creeping-Flow Equations	430
	В	Some General Consequences of Linearity and the Creeping-Flow	47.4
		Equations	434
		I The Drag on Bodies That Are Mirror Images in the Direction of Motion	434
			434
		2 The Lift on a Sphere That is Rotating in a Simple Shear Flow3 Lateral Migration of a Sphere in Poiseuille Flow	438
		 4 Resistance Matrices for the Force and Torque on a Body in 	
		Creeping Flow	439

Contents

С	Representation of Two-Dimensional and Axisymmetric Flows in	
	Terms of the Streamfunction	444
D	Two-Dimensional Creeping Flows: Solutions by Means of	
	Eigenfunction Expansions (Separation of Variables)	449
	I General Eigenfunction Expansions in Cartesian and Cylindrical	
	Coordinates	449
	2 Application to Two-Dimensional Flow near Corners	45 I
Е	Axisymmetric Creeping Flows: Solution by Means of Eigenfunction	
	Expansions in Spherical Coordinates (Separation of Variables)	458
	I General Eigenfunction Expansion	459
	2 Application to Uniform Streaming Flow past an Arbitrary	
	Axisymmetric Body	464
F	Uniform Streaming Flow past a Solid Sphere – Stokes' Law	466
G	A Rigid Sphere in Axisymmetric, Extensional Flow	470
	I The Flow Field	470
	2 Dilute Suspension Rheology – The Einstein Viscosity	
	Formula	473
н	Translation of a Drop Through a Quiescent Fluid at Low Re	477
T	Marangoni Effects on the Motion of Bubbles and Drops	486
J	Surfactant Effects on the Buoyancy-Driven Motion	
	of a Drop	490
	I Governing Equations and Boundary Conditions for a	
	Translating Drop with Surfactant Adsorbed at the Interface	493
	2 The Spherical-Cap Limit	497
	3 The Limit of Fast Adsorption Kinetics	503
Nc	otes	510
Pro	oblems	512
Cr	reeping Flow – Three-Dimensional Problems	512 524
	reeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic	524
Cr	reeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions	
Cr	Teeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions I Preliminary Concepts	524 525 525
Cr	 reeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions Preliminary Concepts Vector "equality" – pseudo-vectors 	524
Cr	 reeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions Preliminary Concepts Vector "equality" – pseudo-vectors Representation theorem for solution of the creeping-flow 	524 525 525
Cr	 reeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions Preliminary Concepts Vector "equality" – pseudo-vectors 	524 525 525 525
Cr	 reeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions Preliminary Concepts Vector "equality" – pseudo-vectors Representation theorem for solution of the creeping-flow equations Vector harmonic functions 	524 525 525 525 525
Cr	 Feeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions Preliminary Concepts Vector "equality" – pseudo-vectors Representation theorem for solution of the creeping-flow equations Vector harmonic functions 	524 525 525 525 526 527
Cr	 reeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions Preliminary Concepts Vector "equality" – pseudo-vectors Representation theorem for solution of the creeping-flow equations Vector harmonic functions 2 The Rotating Sphere in a Quiescent Fluid 	524 525 525 525 526 527 528
Cr A	 reeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions Preliminary Concepts Vector "equality" – pseudo-vectors Representation theorem for solution of the creeping-flow equations Vector harmonic functions The Rotating Sphere in a Quiescent Fluid Uniform Flow past a Sphere 	525 525 525 525 526 527 528 529
Cr A B	 reeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions Preliminary Concepts Vector "equality" – pseudo-vectors Representation theorem for solution of the creeping-flow equations Vector harmonic functions The Rotating Sphere in a Quiescent Fluid Uniform Flow past a Sphere A Sphere in a General Linear Flow 	524 525 525 525 526 527 528 529 530
Cr A B C	 Preeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions Preliminary Concepts Vector "equality" – pseudo-vectors Representation theorem for solution of the creeping-flow equations Vector harmonic functions The Rotating Sphere in a Quiescent Fluid Uniform Flow past a Sphere A Sphere in a General Linear Flow 	525 525 525 526 527 528 529 530 537
Cr A B C	 reeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions Preliminary Concepts Vector "equality" – pseudo-vectors Representation theorem for solution of the creeping-flow equations Vector harmonic functions The Rotating Sphere in a Quiescent Fluid Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Equations 	525 525 525 526 527 528 529 530 537
Cr A B C	 reeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions Preliminary Concepts Vector "equality" – pseudo-vectors Representation theorem for solution of the creeping-flow equations Vector harmonic functions The Rotating Sphere in a Quiescent Fluid Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations The "Stokeslet": A Fundamental Solution for the 	525 525 525 526 527 528 529 530 537 545
Cr A B C	 reeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions Preliminary Concepts Vector "equality" – pseudo-vectors Representation theorem for solution of the creeping-flow equations Vector harmonic functions The Rotating Sphere in a Quiescent Fluid Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations The "Stokeslet": A Fundamental Solution for the Creeping-Flow Equations 	525 525 525 526 527 528 529 530 537 545
Cr A B C	 reeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions Preliminary Concepts Vector "equality" – pseudo-vectors Representation theorem for solution of the creeping-flow equations Vector harmonic functions The Rotating Sphere in a Quiescent Fluid Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations The "Stokeslet": A Fundamental Solution for the Creeping-Flow Equations An Integral Representation for Solutions of the Creeping-Flow 	525 525 525 526 527 528 529 530 537 545 545
Cr A B C D	 reeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions Preliminary Concepts Vector "equality" – pseudo-vectors Representation theorem for solution of the creeping-flow equations Vector harmonic functions The Rotating Sphere in a Quiescent Fluid Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations The "Stokeslet": A Fundamental Solution for the Creeping-Flow Equations 	525 525 525 526 527 528 529 530 537 545 545
Cr A B C D	 Feeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions Preliminary Concepts Vector "equality" – pseudo-vectors Representation theorem for solution of the creeping-flow equations Vector harmonic functions The Rotating Sphere in a Quiescent Fluid Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations The "Stokeslet": A Fundamental Solution for the Creeping-Flow Equations An Integral Representation for Solutions of the Creeping-Flow Equations due to Ladyzhenskaya Solutions for Solid Bodies by Means of Internal Distributions of	525 525 525 525 526 527 528 529 530 537 545 545 547
Cr A B C D	 Preeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions Preliminary Concepts Vector "equality" – pseudo-vectors Representation theorem for solution of the creeping-flow equations Vector harmonic functions The Rotating Sphere in a Quiescent Fluid Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations The "Stokeslet": A Fundamental Solution for the Creeping-Flow Equations An Integral Representation for Solutions of the Creeping-Flow Equations due to Ladyzhenskaya Solutions for Solid Bodies by Means of Internal Distributions of Singularities 	524 525 525 525 526 527 528 529 530 537 545 545 545 547 550 551
Cr A B C D	 Preeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions Preliminary Concepts Vector "equality" – pseudo-vectors Representation theorem for solution of the creeping-flow equations Vector harmonic functions The Rotating Sphere in a Quiescent Fluid Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations The "Stokeslet": A Fundamental Solution for the Creeping-Flow Equations An Integral Representation for Solutions of the Creeping-Flow Equations due to Ladyzhenskaya Solutions for Solid Bodies by Means of Internal Distributions of Singularities Fundamental Solutions for a Force Dipole and Other 	525 525 525 526 527 528 529 530 537 545 545 545 547 550
Cr A B C D	 Preeping Flow – Three-Dimensional Problems Solutions by Means of Superposition of Vector Harmonic Functions Preliminary Concepts Vector "equality" – pseudo-vectors Representation theorem for solution of the creeping-flow equations Vector harmonic functions The Rotating Sphere in a Quiescent Fluid Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations The "Stokeslet": A Fundamental Solution for the Creeping-Flow Equations An Integral Representation for Solutions of the Creeping-Flow Equations due to Ladyzhenskaya Solutions for Solid Bodies by Means of Internal Distributions of Singularities Fundamental Solutions for a Force Dipole and Other Higher-Order Singularities 	524 525 525 525 526 527 528 529 530 537 545 545 545 547 550 551

8

Contents

9

	4 Uniform Flow past a Prolate Spheroid5 Approximate Solutions of the Creeping-Flow Equations by	557
	Means of Slender-Body Theory	560
F	The Boundary Integral Method	564
	I A Rigid Body in an Unbounded Domain	565
	2 Problems Involving a Fluid Interface	565
-	3 Problems in a Bounded Domain	568
G	Further Topics in Creeping-Flow Theory	570
	I The Reciprocal Theorem	571
	 Faxen's Law for a Body in an Unbounded Fluid Inertial and Non-Newtonian Corrections to the Force 	571
		573
	on a Body 4 Hydrodynamic Interactions Between Widely Separated	575
	4 Hydrodynamic Interactions Between Widely Separated Particles – The Method of Reflections	576
No	rarucies – The Heriod of Reflections	580
	oblems	582
		302
Сс	onvection Effects in Low-Reynolds-Number Flows	593
А	Forced Convection Heat Transfer – Introduction	593
	I General Considerations	594
	2 Scaling and the Dimensionless Parameters for Convective	
	Heat Transfer	596
	3 The Analogy with Single-Solute Mass Transfer	598
В	Heat Transfer by Conduction ($Pe \rightarrow 0$)	600
С	Heat Transfer from a Solid Sphere in a Uniform Streaming Flow at	
	Small, but Nonzero, Peclet Numbers	602
	I Introduction – Whitehead's Paradox	602
	2 Expansion in the Inner Region	605 606
	3 Expansion in the Outer Region	611
	4 A Second Approximation in the Inner Region5 Higher-Order Approximations	613
	6 Specified Heat Flux	615
D	Uniform Flow past a Solid Sphere at Small, but Nonzero, Reynolds	010
0	Number	616
Е	Heat Transfer from a Body of Arbitrary Shape in a Uniform	010
-	Streaming Flow at Small, but Nonzero, Peclet Numbers	627
F	Heat Transfer from a Sphere in Simple Shear Flow at Low	027
•	Peclet Numbers	633
G	Strong Convection Effects in Heat and Mass Transfer at Low	000
0	Reynolds Number – An Introduction	643
н	Heat Transfer from a Solid Sphere in Uniform Flow for $Re \ll 1$	045
	and $Pe \gg 1$	645
	I Governing Equations and Rescaling in the Thermal	045
	Boundary-Layer Region	648
	2 Solution of the Thermal Boundary-Layer Equation	652
Ι	Thermal Boundary-Layer Theory for Solid Bodies of Nonspherical	
•	Shape in Uniform Streaming Flow	656
	I Two-Dimensional Bodies	659
	2 Axisymmetric Bodies	661
	3 Problems with Closed Streamlines (or Stream Surfaces)	662
J	Boundary-Layer Analysis of Heat Transfer from a Solid Sphere in	
	Generalized Shear Flows at Low Reynolds Number	663

	K	 Heat (or Mass) Transfer Across a Fluid Interface for Large Peclet Numbers I General Principles 2 Mass Transfer from a Rising Bubble or Drop in a Quiescent Fluid Heat Transfer at High Peclet Number Across Regions of Closed-Streamline Flow I General Principles 2 Heat Transfer from a Rotating Cylinder in Simple Shear Flow 	666 666 668 671 671 672
		utes bblems	680 681
10	La A B C	minar Boundary-Layer Theory Potential-Flow Theory The Boundary-Layer Equations Streaming Flow past a Horizontal Flat Plate – The Blasius Solution	697 698 704 713
	D	Streaming Flow past a Semi-Infinite Wedge – The Falkner–Skan Solutions	719
	E F	Streaming Flow past Cylindrical Bodies – Boundary-Layer Separation Streaming Flow past Axisymmetric Bodies – A Generalizaiton	725
	G	of the Blasius Series The Boundary-Layer on a Spherical Bubble	733 739
		utes bblems	754 756
П	He A	eat and Mass Transfer at Large Reynolds Number Governing Equations ($Re \gg I$, $Pe \gg I$, with Arbitrary Pr or Sc	767
		numbers)	769
	В	Exact (Similarity) Solutions for Pr (or Sc) \sim O(1)	771
	С	The Asymptotic Limit, $Pr(\text{or Sc}) \gg 1$	773
	D	The Asymptotic Limit, $Pr(\text{or } Sc) \ll 1$	780
	E F	Use of the Asymptotic Results at Intermediate <i>Pe</i> (or <i>Sc</i>) Approximate Results for Surface Temperature with Specified Heat	787
	G	Flux or Mixed Boundary Conditions Laminar Boundary-Layer Mass Transfer for Finite Interfacial	788
		Velocities	793
		ites iblems	797 797
12			
	Ну	drodynamic Stability	800
	Hy A	r drodynamic Stability Capillary Instability of a Liquid Thread	800 801
		Capillary Instability of a Liquid Thread I The Inviscid Limit	801 804
	-	Capillary Instability of a Liquid Thread	801 804 808
	A	Capillary Instability of a Liquid Thread I The Inviscid Limit 2 Viscous Effects on Capillary Instability 3 Final Remarks	801 804
	-	 Capillary Instability of a Liquid Thread I The Inviscid Limit 2 Viscous Effects on Capillary Instability 3 Final Remarks Rayleigh–Taylor Instability (The Stability of a Pair of Immiscible 	801 804 808 811
	A	 Capillary Instability of a Liquid Thread I The Inviscid Limit 2 Viscous Effects on Capillary Instability 3 Final Remarks Rayleigh-Taylor Instability (The Stability of a Pair of Immiscible Fluids That Are Separated by a Horizontal Interface) 	801 804 808 811 812
	A	 Capillary Instability of a Liquid Thread The Inviscid Limit Viscous Effects on Capillary Instability Final Remarks Rayleigh-Taylor Instability (The Stability of a Pair of Immiscible Fluids That Are Separated by a Horizontal Interface) The Inviscid Fluid Limit The Effects of Viscosity on the Stability of a Pair of Superposed 	801 804 808 811 812 816
	A	 Capillary Instability of a Liquid Thread The Inviscid Limit Viscous Effects on Capillary Instability Final Remarks Rayleigh–Taylor Instability (The Stability of a Pair of Immiscible Fluids That Are Separated by a Horizontal Interface) The Inviscid Fluid Limit 	801 804 808 811 812

С	Saffman–Taylor Instability at a Liquid Interface	823
	I Darcy's Law	823
	2 The Taylor–Saffman Instability Criteria	826
D	Taylor–Couette Instability	829
	I A Sufficient Condition for Stability of an Inviscid Fluid	832
	2 Viscous Effects	835
Е	Nonisothermal and Compositionally Nonuniform Systems	840
F	Natural Convection in a Horizontal Fluid Layer Heated from	
	Below – The Rayleigh–Benard Problem	845
	I The Disturbance Equations and Boundary Conditions	845
	2 Stability for Two Free Surfaces	851
	3 The Principle of Exchange of Stabilities	853
	4 Stability for Two No-Slip, Rigid Boundaries	855
G	Double-Diffusive Convection	858
Н	Marangoni Instability	867
I	Instability of Two-Dimensional Unidirectional Shear Flows	872
	I Inviscid Fluids	873
	a The Rayleigh stability equation	873
	b The Inflection-point theorem	875
	2 Viscous Fluids	876
	a The Orr–Sommerfeld equation	876
	b A sufficient condition for stability	877
	ites	878
Pro	oblems	880
Append	lix A: Governing Equations and Vector Operations in Cartesian,	
Cylindr	ical, and Spherical Coordinate Systems	891
Append	lix B: Cartesian Component Notation	897
Index		899