

Contents

Pr	Preface	
1	Introduction	1
	What is a target cell?	3
	Cells, simple and complex tissues	3
	How are signals defined?	4
	Intracellular signal transduction	5
	Cellular competence	5
	Cell and tissue sensitivity to signal inputs	5
2	Hormones and Signals: Identification and Description	
	of Signalling Molecules	6
	Auxin	6
	Auxin biosynthesis	6
	Auxin conjugation	8
	Sites of auxin biosynthesis and transport	9
	Gibberellins	10
	Gibberellin biosynthesis	10
	Cytokinins	11
	Abscisic acid (ABA)	14
	Ethylene	17
	1-Aminocyclopropane-1-carboxylic acid (ACC)	19
	Brassinosteroids	19
	Jasmonates	22
	Salicylic acid	25
	Methylsalicylate and methyljasmonate as signalling volatiles	27
	Nitric Oxide	27
		vii

viii CONTENTS

	Oligosaccharins	28
	Oligogalacturonides (OGAs)	29
	Xyloglucan derivatives	30
	Arabinogalactan proteins	31
	Unconjugated N-glycans	32
	Lignans as signalling molecules	33
	Peptides as signals in plants	34
	Systemin	34
	Systemin-like peptides	35
	RALF peptides	36
	CLAVATA peptides	37
	Phytosulfokines	38
	S-locus cysteine-rich proteins (SCRs)	40
	Major and satellite signals	41
3	Cell-to-Cell Signalling: Short and Long Distance	42
	Origins of cell-to-cell signalling	43
	Short-distance signalling	44
	Meristems	44
	Controlling meristem size	49
	Other short-distance signals	51
	Inter-wall signals	54
	Saccharide-derived signals	54
	Lignin-derived signals	60
	Long-distance signals	62
	Hormones and root-to-shoot signalling	63
	Systemin as a long-distance signalling molecule	70
	Plant nutrients and shoot-to-root signalling	74
	Volatiles and signalling	74
	Methylsalicylate	74
4	Population Diversity of Cell Types and Target Identification	
	in Higher Plants	76
	Evolution of cell types	78
	Meristems as stem cells	80
	Flexibility and plant cell differentiation options	82
	Meristem centres	82
	Options for cell enlargement	84
	The search for molecular markers	85
	Cell performance and ageing in the target state	89
	Senescence and cell death	91
	Is regeneration possible?	95
5	Flexibility of Cell Types and the Target Cell Status	98
	Epidermis as a target state	100
	Flexibility in epidermal cells	100

	CON	NTENTS ix
	Dorsiventrality in the epidermis	102
	The epidermis as a target tissue – Evidence from	
	experiments in vitro	102
	Epidermal cross-talk	103
	Epidermal outgrowths – Trichomes	104
	Epidermis and shoot elongation	105
	Cortical parenchyma cells	107
	Aerenchyma	112
	Loss of flexibility with age	113
	Pith parenchyma	113
	Lignified cells	115
6	Terminally Committed Cell Types and the Target Status	117
	Statocytes	118
	Abscission cells	125
	The aleurone	131
	Stomata and trichomes	138
	Stomata	138
	Trichomes	142
	Vascular tissue	143
7	The Mechanisms of Target Cell Perception and Response to	
•	Specific Signals	146
	The emergence of the receptor concept in higher plants	147
	Auxins and the receptor concept	148
	Identification and characterisation of auxin binding proteins	148
	Aux/IAA proteins and auxin action at the gene level	157
	How does auxin exert its cellular effects on target tissues –	
	A working model	161
	Ethylene perception	163
	Evidence that receptor proteins perceive ethylene	163
	Characterisation of ETR function	165
	Evidence that the expression of receptors is developmentally	
	regulated in plant tissues	172
	Does receptor abundance confer a target status to the cell?	175
8	Hormone Action and the Relief of Repression	179
	Cytokinin perception in the context of receptors and target cells	179
	Identification and characterisation of cytokinin receptors and	
	their downstream elements	181
	Response elements and modulating the cytokinin input	184
	A model for cytokinin signalling in plants	185
	Gibberellin perception and the search for receptors	187
	Summary of the candidates for gibberellin binding proteins ar	nd
	receptors	187

x CONTENTS

	GA perception and signalling	188
	The role of the DELLA protein in regulating the GA response	189
	Perception of the brassinosteroids	192
	A molecular model of plant hormone action and the target cell	
	concept	196
9	The Phenomenon of Hormonal Cross-Talk	198
	Concluding remarks	201
Re	ferences	205
Ind	Index	