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Editor's Statement 

A large body of mathematics consists of facts that can be presented and 
described much like any other natural phenomenon. These facts, at times 
explicitly brought out as theorems, at other times concealed within a proof, 
make up most of the applications of mathematics, and are the most likely 
to survive changes of style and of interest. 

This ENCYCLOPEDIA will attempt to present the factual body of all 
mathematics. Clarity of exposition, accessibility to the non-specialist, and a 
thorough bibliography are required of each author. Volumes will appear in 
no particular order, but will be organized into sections, each one compris­
ing a recognizable branch of present-day mathematics. Numbers of 
volumes and sections will be reconsidered as times and needs change. 

It is hoped that this enterprise will make mathematics more widely used 
where it is needed, and more accessible in fields in which it can be applied 
but where it has not yet penetrated because of insufficient information. 

Anyone who has ever had to solve a differential equation is familiar with 
separation of variables. Mostly, this method is remembered as a bag of 
tricks at the borderline of mathematics. 

Professor Miller has given the first systematic treatment of this method. 
He shows how separation of variables relates to one of the central fields of 
today's mathematics and mathematical physics; namely, the theory of Lie 
algebras. 

This volume is the first in the Section dealing with the theory of those 
special functions which occur in the practice of mathematics. 

GIAN-CARLO ROTA 

vu 
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Foreword 

This is the first in a series of books that will try to show how and why 
special functions arise in many applications of mathematics. The elemen­
tary transcendental functions, such as the exponential, its inverse, the 
logarithm, and the trigonometric functions, form part of the working tools 
of all mathematicians and most users of mathematics. There was a time 
when knowledge of some of the higher transcendental functions was 
almost as widespread. For example, there were a surprisingly large number 
of books written on elliptic functions in the last half of the nineteenth 
century, and esoteric facts about Bessel functions and Legendre functions 
were regularly set as tripos problems. However, knowledge of these func­
tions and the few other very useful special functions is no longer as 
widespread, and it has even been possible for important special functions 
to arise in applications and be studied for twenty-five years or more 
without any of the people studying them being aware that some of the 
results they rediscovered were found about a hundred years earlier. This 
has occurred in the last forty years with what are called 3— j symbols. 
These functions occur when studying the decomposition of the direct 
product of two irreducible representations of SU(2). Since a knowledge of 
hypergeometric series was not as widespread as it should be, it has only 
recently been realized that one of the orthogonality relations for 3—j 
symbols is the same as the orthogonality for a set of polynomials that was 
found by Tchebychef in 1875 and that Tchebychef had some useful 
formulas for these polynomials that still have not been published in the 
physics literature, where most of the development of 3—j symbols has 
occurred. Similarly, a symmetry relation for the 3—j symbols that was 
found by Regge in 1958 had been given by Whipple in 1923 and even 
earlier by Thomae in 1879. The first of the symmetries for these functions 
was stated by Kummer in 1836. If these results were easy to derive and 
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X Foreword 

could be found by anyone who needs them, then there would be no reason 
to worry about old results getting lost. However, this is often not the case, 
and was definitely not true with respect to Regge's symmetry. The 3—/ 
symbols had been studied by many people in the period from 1930 to 1958, 
and every one of them had missed this symmetry. 

The lack of information transfer between mathematicians and users of 
mathematics goes both ways; this can also be illustrated by a similar 
example. In 1942 Racah published an important orthogonality relation for 
functions that are now called 6 —j symbols or Racah coefficients. He also 
found an important representation for these functions as a single sum. 
They arise naturally as a fourfold sum. When Racah's single-sum expres­
sion is used in his orthogonality relation, and a transformation formula of 
Whipple is used on the 6 —j symbol (Racah had rediscovered this transfor­
mation), a new set of orthogonal polynomials arises which had been 
completely missed in the mathematics literature. In fact the situation was 
worse than that; not only had this set of orthogonal polynomials not been 
discovered, there were a number of theorems that seemed to say that the 
existing set of orthogonal polynomials in one variable were all the orthogo­
nal polynomials in one variable that would have useful explicit formulas. 
This was not true, as the polynomials buried in Racah's work show. 

The most important lesson to be learned from this example is that 
people with different backgrounds need to talk to each other, since 
mathematics does not come in isolated parts that are unrelated. This series 
of books is one attempt to try to show how one part of mathematics relates 
to other parts, and how it can be used to solve problems of interest to 
scientists with many different backgrounds. The rest of the Foreword will 
be a short outline of our current view of special functions. Since there are a 
number of important special functions, this summary will be given in 
approximately the order in which the functions were discovered. One fact 
which will surprise many people is that our current view of some subjects 
has changed only slightly since the first deep results. We write in a more 
modern language, but most of the ideas we use were present at a very early 
time. 

When applications are considered, the most important special functions 
are the hypergeometric functions. A generalized hypergeometric series is a 
series 

00 

n = 0 

with an+l/an a rational function of n. This rational function is usually 
factored as 

an + i _ (n + al)(n + a2)'"(n + ap) x 

«n " {n + bx)(n + b2y~(n + bq) (/! + ! ) ' 
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Foreword XI 

so that 

a„ = -
(a\)n"-(ap)n x" 

The shifted factorial (a)n is defined by 

(a)H = a(a + \) — (a + n-\), n=l,2,..., 

(a)o=l-

The series 2^L0
a/i *s written as 

(a\)n---(ap)n X
n 

AZ"Z-')-2 ( * , ) . - (» , ) . « 
1 * 

This series converges for all complex x when p<q and |x| < 1 when 
p = q+\. Among the special cases are 

00 

2 xn 

~ n \ ' 
n = 0 

( l - x ) - a = , F 0 ( ^ ; x ) = | ; ^ x " (|x|<l); 
/i = 0 

: = *ô i I i ; ~T~) ; 

: = o F l ( i ; ^ ) ; 

log(l+Jc) = x 2 F 1 ( 1 ^ 1 ; - j c ) ( | x | < l ) ; 

arctanx = x2ir
1 

sinx = 

cosx = 

i.i 

arcsinx = x2/
7
1 

2 ' 2 2 

3 >X 

( |x |<l); 

(\x\<l); 

COSTTX 

z 
PQ 
in 

The last example is particularly important, for it suggests that the parame­
ters that occur in hypergeometric series can play a more important role in 
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Xll Foreword 

the study of hypergeometric series than that of just enabling us to dis­
tinguish between different series. Gauss was probably the first person to 
realize this; we will return to his results after describing some earlier work 
of Wallis and Euler that is necessary before we can see why this last 
formula holds. 

The factorial function «! = 1 • 2 n occurs as soon as one considers 
the binomial theorem. The easiest extension of n\ is the shifted factorial 
(a)n defined earlier. Clearly, n\=(\)n. However, it does not solve an 
interesting question, what is (^)!? This question was solved by Euler when 
he introduced T(x). His original expression was an infinite product, but he 
also gave an integral representation which is equivalent to 

f 

0 

fx-\0-t •e-'dt. 

This integral is our usual starting point when developing properties of 
T(x), but there is something to be said for Euler's product or other 
definitions which define the gamma function directly for all x and not just 
for Rex>0 , as in the integral. One such definition is 

— = xeyx I I [\ + -\e-x/n 

T(x) 
A 7 = l 

where 

•no^). 

' = lim (1 + ^-+ ••• + - - l o g A 

Another, which was found by Euler but is usually attributed to Gauss, is 

1 r to* x_x 
= lim ——nl x. T(X) "-co (1)^ 

Euler used the gamma function to evaluate the beta function integral 

as 

B(x,y)= f tx-x{\-ty~xdt 

B(x,y) = 
T(x+y) O 

6 
Z 

It is very easy to see that this implies T(\)= VTT . In fact, Euler's original S3 
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Foreword xm 

6 

i 

definition of the gamma function reduces (after using some simple algebra) 
to Wallis's infinite product for IT when x = \. 

In the nineteenth century many different integral representations were 
given for T(x), and Hankel proved that it did not satisfy a differential 
equation with algebraic coefficients. It does satisfy the difference equation 
T(x+ \) = xT(x), but this is not a sufficiently strong condition to determine 
T(x). A natural condition that forces the solution to be unique was found 
by Bohr and Mollerup: logT(x) is convex for x >0 . The current generation 
of mathematicians is quite interested in structural conditions, and this 
theorem is a beautiful example of the type of result that is held in high 
regard by contemporary mathematicians. It is a very pretty theorem, and it 
is useful; but we must not forget that the real reason the gamma function 
is studied is because it is so useful. It occurs so often that we are forced to 
consider it. This is just one of many examples of the way mathematical 
aesthetics and utility force us in the same path. Why this happens is still a 
mystery. 

Study of the factorial and the gamma function has led to the develop­
ment of a number of general mathematical ideas that have been useful 
elsewhere. One of the most fruitful is the notion of an asymptotic expan­
sion. Stirling found a method of computing n\ for large n. The series he 
obtained does not converge, but it can still be used to obtain very accurate 
values of n\. Euler's formula 

r(x)r(i-x)= * 
Sin7TX 

can be used to give an analytic continuation of the gamma function from 
Rejc>0 to R e x < l , x^=0, - 1 , . . . . When used with one of the infinite 
products for T(x) it gives Euler's product 

smirx -nH)-TTX 
n=\ 

This product, the one given earlier for l/T(x), and some further products 
for elliptic functions and theta functions which will be mentioned later led 
Weierstrass to his theorem on canonical products for entire functions, and 
the logarithmic derivatives of the product formulas led Mittag-Leffler to 
his expansion theorem for meromorphic functions. 

To return to hypergeometric series, Gauss evaluated 

2J , \ . = 2 ^ i ( ' . 1 ) = w ^ 7 7T. Re(c-a-b)>0. 
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XIV Foreword 

When c = \, a = x, b = — x, this is 

(x9-x \ [rG)] 
~>FA i ;1 = = sm7r( ~ + x ) = coS77\x. 

'I * / r(i-x)r(i+,) V2 ; 

Euler was the first to study 2Fx[
a>° \x\ in the general case. He found a 

second-order differential equation it satisfies, and gave the transformation 
formula 

2Fl(«>J>;X) = (l-Xy->-b
2Fl(c-<'f-t>;x) 

and the integral representation 

r(a,b.x\= if) C (\- xtYatb~x (\- tY~b~x dt 
l t x \ c '*J T(b)T(c-b)J0

[ } ( } 

Pfaff, in the course of editing some of Euler's posthumous papers, found 
two more transformation formulas. He stated both only in the case in 
which the series terminates, but one extends immediately to the non-
terminating case. They are 

and 

*(-?i:*)-^-(*-;:?-,:'-4 -*• 
The first contains a number of examples Euler gave of transformations of 
series that speed convergence. For example, when x= — 1, the series 

2FA ai° ; —l) converges slowly, whereas ^ l a>c ~ , — J converges much 

more rapidly. In an age when computation is easy and relatively inexpen­
sive, we find it hard to realize how many mathematical developments were 
stimulated by the desire to compute something. These transformation 
formulas, along with Euler's transformation, were the first of a limited 
number of transformation formulas between generalized hypergeometric 
series which have been discovered in the last two hundred years. Another 
one is Regge's symmetry of the 3—j symbols mentioned earlier. Gauss 
found the correct extension of Pfaff's second transformation in the case 
when the series does not terminate. The factor 

(c-b)n T(n + c-b)T(c) 

O 

6 
i 

Z 
OQ (c)„ T(n + c)T(c-b) | 
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Foreword xv 

becomes 

T(c-a-b)T(c) 

T(c-a)T(c-b) 

when - n is replaced by a, as one might suspect, but that is not the only 
change. There is another term that must be added. 

Gauss also considered a different type of result. He defined two hyper-
geometric series to be contiguous if all their parameters are the same with 
one exception, and if they differ by one in this parameter. He showed that 

a general 2Fxi
 a^ ;x) and any two 2FX series that are contiguous to it are 

linearly dependent. There are nine such relations after the symmetry of 

2Fxi
 a>° ;x\ in a and b is used. These contiguous relations can be iterated, 

so any three functions 2F\a J' \x\ wi th j ,k j integers are linearly 

dependent. Since 

d_ 
dx2 ',(?•.*)-$ M'+xr-4 

it is easy to see that Euler's differential equation for 2Fxl
 a^ ;x) can be 

written as one of these iterated contiguous relations. At the end of his one 
published paper on hypergeometric series, Gauss stated this difference 
equation. His second paper, which remained unpublished during his life, 
treated this equation as a differential equation and he found most of the 
explicit formulas that can be derived directly from this equation. This 
includes the quadratic transformations, which play a fundamental role in a 
number of problems. To get a better perspective on these transformations, 
two other important eighteenth-century discoveries need to be considered. 

One was the study of elliptic integrals by Fagnano, Euler, Landen, and 
Legendre, and of the arithmetic-geometric mean by Lagrange and Gauss. 
The other was the introduction of spherical harmonics and Legendre 
polynomials by Legendre and Laplace. The first of these developments led 
to elliptic functions, a subject that was studied extensively in the last three 
quarters of the nineteenth century by Abel, Jacobi, Eisenstein, Weierstrass, 
Hermite, and many others. The second is directly tied up with some of the 
algebraic approaches to special functions which have been developed in 
the last fifty years. A good historical summary of the early work on elliptic 
integrals was given by Mittag-Leffler (see [6]); Landen's transformation in 
the form given by Lagrange is described there (the reference to Enneper on 
page 291 should be to page 357, not page 307). Gauss's quadratic transfor-

Z mation of the elliptic integral of the first type is also given by Mittag-Lef-
£ fler. Lagrange was motivated by a desire to compute the value of an 

o 
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XVI Foreword 

important integral. Gauss first considered the sequences an+l = (an + b„)/2, 
bn+i = (anbn)

l/2; observed that they converge, and was able to recognize 
the value they converge to when a0 = 21//2, b0= 1; and finally evaluated the 
limit in general. Gauss then used this result to lead him to two further 
results, the introduction of the lemniscate functions, which are special 
elliptic functions, and of the two general quadratic transformations of the 
ordinary hypergeometric function 2Fx(a,b\c\x) with different restrictions 
on one of the parameters. These functions form a very important subclass 
of the general 2F\, for after they have been multiplied by an appropriate 
algebraic function, they are exactly the class of hypergeometric series that 
we call Legendre functions. 

Legendre polynomials were studied extensively by Legendre and 
Laplace in the 1780s. They can be introduced in the following way. The 
function (c2 — 2crcos0 + r2)~l/2 represents the potential in an inverse 
square field at a point P of a source at C, where r and c are the distances 
from P and C to a fixed point 0 , and 0 is the angle between the segments 
PO and OC. This function can be expanded in a power series in r to give 

00 

(c2-2crcos0 + r2yl/2= 2 PH(cos0)rnc'n'\ 

Pn(x) is a polynomial of degree n in x which we call the Legendre 
polynomial. Legendre and Laplace discovered the following facts about 
these polynomials. 

f_Pn(x)Pm(x)dx = 0, m^n; f_(P„ (x))2dx- j ^ . (LA) 

rPn(cos9)Pm(cos9)sin9d0 = O, m¥=n; 

° (L.la) 
/ ^ ( c o s * ) ] ' ^ * - ^ . 

JP„(COS^) = (1/TT) r r c o s 0 + /sin0cos<pr</<p. (L.2) 
•'o 

J
f7r 

Pn(cos0coscp-\-sm0sm(pcos^)d^. (L.3) 
o 

(l-x2)y"-2xyf + n(n +1)>>=0, y = Pn(x). (LA) 
CO 

o 
P„ (cos 9 cos <p + sin 9 sin <p cos ̂ ) = Pn (cos 9 )P„ (cos <p) 2 

+ 2ZJ T-ri^Pr1 (™s9)Pn
k (cos<p)cosk*. (L.5) Z 

(/! + *)! 

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-17739-9 - Symmetry and Separation of Variables: Encyclopedia of Mathematics and its
Applications: Volume 4
Willard Miller
Frontmatter
More information

http://www.cambridge.org/9780521177399
http://www.cambridge.org
http://www.cambridge.org


Foreword xvn 

The associated Legendre functions are defined by 

Pn
k(x) = (-l)k(l-x^2-f];Pn(x), - K K 1 , k=\,...,n. (L.6) 

dxK 

Earlier Lagrange had come across these same polynomials as solutions to a 
difference equation 

(2n+\)xPn(x)^(n+l)Pn+l(x) + nPn_l(x). (L.7) 

Each of the foregoing results is only one of an extensive class of 
formulas for more general special functions. To see what they are, the 
corresponding results for trigonometric functions will be given next and 
then a description of the natural setting for these formulas will be given. 
Since cos n0 is a polynomial of degree n in cos0, we will consider Tn(x), 
which is defined by Tn(cos 8) = cos n0. 

j X Tn(x)Tm(x)(\-x2yl/2dx = 0, m^n, 

cos nO cos m0dO = O, m^= n, 

J {"IT 

o ' 

77, rt=0, 
cos2nOdO = \ £ H = 1 9 

ein0+e-in0 

d0 
= — n sin n0, 

</cos0 rfx sin0 n _ l v ' 

(T.l) 

(T.la) 

cos n9=Z—Y • (T-2) 

cos nO cos ri(p=-= [cosn(0+<p) + cosn(9 — <p)]. (T.3) 

( l - x V ' - ^ ' + ^ o , ^ = r„(*). (T.4) 
w"(0) + «2w(0) = o> u = cosn9. (T.4a) 

cosrt(0 + <p) = cosrt0coswp-sinrt0sinrt<p. (T.5) 

dCOSA10 

(T.6) 

2cos0cos«0 = cos(tt+ \)0 + cos(n — 1)0; (T.7) 

K xT0(x) = Tl(x). 

4 ^ „ ( x ) = i 7 ; + 1 ( x ) + | 7 ; _ 1 ( x ) , n = l ,2 , . . . , 
« „, ^ ~ , x (T.7a) 
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XV111 Foreword 

The orthogonality relations (L.l) and (T.l) are fundamental. Since both 
Pn{x) and Tn(x) are polynomials, they are orthogonal polynomials. Any 
set of polynomials in one variable that is orthogonal with respect to a 
positive measure satisfies a three-term recurrence relation 

xpn(x) = AnPn + l(x) + BnPn(X) + Cnpn_l(x) 

with An_xCn>0, Bn real. Conversely, any set of polynomials that satisfy 
this recurrence relation are orthogonal with respect to a positive measure 
when An_xCn>0 and Bn is real. If An_xCn>0, (/i = 1,2,.. . ,#), ANCN+X = 
0, then the polynomials are orthogonal with respect to a positive measure 
that has only finitely many points of support. This recurrence relation 
reminds one of Gauss's contiguous relations for 2^YS> anc^ there are a 
number of cases when the recurrence relation can be shown to be an 
instance of one of Gauss's formulas or an iterate of these formulas. In 

other cases there are other hypergeometric series, either 3F2[
 a> yC ; l ) or 

4F3I n'r\ a* , C ; 1 J where a + b + c + \ = d+e+f, which satisfy more 

general contiguous relations that lead to orthogonal polynomials. Now the 
polynomial variable is in one or more of the parameter spots, rather than a 
power series variable. As a result of this and our too exclusive interest in 
power series, these polynomials were not studied and applied as early and 
as often as they should have been. 

One of the reasons cos# and sin# are so useful is their connection with 
the circle. The addition formula (T.5) is most easily proved by using a 
rotation of the circle. Cauchy gave this proof. Similarly, the addition 
formula for Pn(x)9 which is (L.5), arose by considering the rotation group 
acting on the sphere in R3. 

To understand the setting, consider first the circle. A function / (0 ) , 
0 < 9 < 277, / (0) =/(27r), can be expanded in a Fourier series 

/ ( 0 ) ~ y + 2 (ancos/i0 + fc„sinn0) 
n = 1 

where 

< , = ! r f(0)cosnOdO, bn=- r f(9)sinn0d0. 

1 

One application of this expansion is to the construction of a harmonic S 
function u(x,y) for x2 +y2 < 1, which assumes a given boundary value. For 2 
let § 

a0 °° $ 
u(x,y)= — 4- 2 rn[ancosn9 + bnsinn0~\, § 2 . - 1 

Xfl 
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Foreword xix 

jc = rcos#, y = rsin0. Then u(x,y) is harmonic; that is, 

d2u d2u _ ^ 

dx2 dy2 

and 

lim u(rcos0,rsin0)=f(0) 

when f(0) is continuous for 0 < 0 < 2 77. 
A similar problem exists for three variables, and it is solved in a similar 

way. First, one must find a set of functions that satisfies Laplace's 
equation 

d2u d2u d2u _~ 
dx2 dy2 dz2 

for x2+y2 + z2<\. This is done by introducing spherical coordinates 
x = rcos<psin#,>> = A*sin<psin0, z = rcos0, 0 < <p<2?r, 0 < 0 <TT, and finding 
solutions of Laplace's equation of the form a(r)b(0)c(<p). One can take 
a(r) = rn, c(cp) = cosk(p or sin/cqp, and then b(9) can be taken to be 
P*(cos0). The functions rncosn0 = Re(x + iy)n and rnsinn0 = lm(x + iy)n 

are homogeneous polynomials of degree n in x and y. Similarly, 
rnP* (cos0)coskcp and rnP*(cos0)sink(p, k = 0,1,...,«, are homogeneous 
harmonic polynomials of degree « in x, y, and z which are linearly 
independent. There are 2/2 + 1 of these, and this is the same number that 
appears the denominator in (L.l). Similarly, the functions rncosn0 and 
rnsinnO are linearly independent when «=1 ,2 , . . . , and there are two of 
them, while for n = 0 there is only one. This explains the denominators in 
(T.l). These homogeneous harmonic polynomials are then used to con­
struct a harmonic function for x2+y2 + z2< 1 with given boundary values 
in exactly the same way as in the case of the circle, since the functions 
P„ (cos0)coskcp and P*(cos0)sink<p, k = 0,1,...,«, n=0, l , . . . , form a 
complete orthogonal set of functions. 

Formula (L.3) is the basic functional equation satisfied by the zonal 
spherical harmonic of degree n on S2. Zonal means independence from the 
angle (p. We call the zonal spherical harmonics spherical functions. The 
general setting for such spherical functions is a space with a distance 
function and a group G operating on this space. The space is homogeneous 
in that any point can be mapped to any other point by the group. Also, the 

£ space should have the property that if d(xl,yl) = d(x2,y2), then there is 
£ gSG with g(xx) = x2, g(y\)=y2- Such spaces are said to be two-point 
1 homogeneous. In addition to the sphere in R3, spheres of any dimension, 
g projective spaces over the reals, complexes, and quaternions, and a two-di-
Z mensional projective space over the Cayley numbers are compact two-
22 point homogeneous spaces which are Riemannian manifolds. In each of 
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XX Foreword 

these cases the spherical functions are orthogonal polynomials in a vari­
able depending on the distance. Each of these orthogonal polynomials is 

also a hypergeometric function of the type 2F\\ \ \n f° r some a 
and b. The measure sin0d0 in the case (L.la) comes from looking at the 
size of an orbit of a small arc dQ under a rotation that leaves the north pole 
fixed. 

There are other very important two-point homogeneous spaces which 
are compact. The easiest to visualize is the set of vertices of the unit cube 
in RN. Again the spherical functions are orthogonal polynomials, and they 
are orthogonal with respect to the symmetric binomial distribution 

I N )2~N, x = 0, 1,...,7V, since this is the size of the orbit of any point with 

x zeros and N — x ones under the octahedral group acting on this space 
and leaving (0,0,...,0) fixed. These orthogonal polynomials are also hyper­
geometric functions, 2FX( _' ; 2 j , x, n = 0, 1,...,JV, and their three-
term recurrence relation is one of the Gauss contiguous relations. They are 
called Krawtchouk polynomials, though they were introduced almost one 
hundred years ago by Gram, and they play an important role in coding 
theory, a subject covered in Volume 3 (The Theory of Information and 
Coding) in this Encylopedia. 

The differential equations (L.4) and (T.4), (T.4a) arise when Laplace's 
equation is solved by separation of variables. The addition formulas (L.5) 
and (T.5) are among the most important facts known about these func­
tions. In most of the cases of two-point homogeneous spaces where explicit 
formulas have been found for the spherical functions there is an addition 
formula that contains the functional equation as the constant term in an 
orthogonal expansion. For example, if (L.5) is integrated on [0,7r] with 
respect to d^ and (T.la) is used, the result is (L.3). The most natural way 
to derive addition formulas of this type is to use a group acting on the 
space, and this is essentially the method used by Laplace and Legendre 
almost two hundred years ago. 

Another important class of functions that were introduced in the eigh­
teenth century are Bessel functions. The Bessel function of the first kind 
Ja(x) can be defined by 

7 a W ~ „ = o r(/i + a + l ) n ! ~ r ( ^ ° F l U + l ; 4 j " 

After the elementary transcendental functions, these are the class that have 
been studied most extensively and they have been used in many fields 
where mathematics has been applied. They have a strong connection with 
Legendre functions which has been studied by many people. A simple 
example is Mehler's formula 

lim Pn(cos-) = J0(z). in 
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o 

This can be interpreted by considering Legendre polynomials as spherical 
functions on a sphere of large radius and seeing what happens in a 
neighborhood of the north pole. The sphere becomes flat and this suggests 
that J0(z) should play a role in R2 similar to that of Pn(cosO) on S2. The 
analogues of zonal functions are called radial functions, those functions 
which depend only on the distance from the origin. One important fact is 
due to Poisson. If f(xl,x2) = g((x2 + x2

iy/2) and 

I f(xl,x2)exp[i(xlyl + x2y2)\dxldx2, 
- oo J — oo 

then 

F(y^2) = G{{y]+yl)A/2) 

and 

G(t) = 27rfC° g(r)rJ0(rt)dr. 

The next big development in special functions was the introduction of 
elliptic functions and theta functions by Abel and Jacobi. Again Mittag-
Leffler's paper gives a good historical summary. There have been a few 
other developments since then that allow us to view the subject with a 
slightly different perspective. One important development was when Heine 
introduced what are now called basic hypergeometric series. Recall that a 
hypergeometric series is a series 2tf„ with an+l/an a rational function of n. 
A basic hypergeometric series is a series 2<z„ with an + l/an a rational 
function of qn for some fixed q. The role played by the shifted factorial 
(a)n in hypergeometric series is now played by (a;q)n = (\ — a)(\ — aq)--
{\-aq"-x\ If | * | < 1 , then (a; q)„ =H~=0(\ - aq") and (a;q)n = 
(a;q)co/(aqn;q)O0 is defined for noninteger values of n as long as aqn + k¥z 

1, k = 0,1,.... Euler had evaluated two basic hypergeometric series: 

oo oo (n\ „ 

V X" 1 V ^ ^n^'X 2 <-)"££--<*;,). 
These are special cases of the ^-binomial theorem 

„=0(<7W)„X (x;q)„ ' 

6 a result which is attributed to many different people. Heine discovered it 

n when he introduced the basic analogue of 2FAa'°;x\ in 1847. Cauchy 
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XX11 Foreword 

had published a proof a few years before this, and Jacobi gave a reference 
to an 1820 book of Schweins. This formula is given by Schweins, but he 
refers to an earlier work of Rothe. Unfortunately I have not seen Rothe's 
book and so cannot confirm the 1811 date given by Schweins. However, it 
seems very likely that he is correct. Gauss published related formulas in 
1811. 

One of the most important basic hypergeometric series is the theta 
function 

f ? " V = ( ? V U - <?*; <?2U - <?* ~'; <72)TO-
— oo 

This was not the first instance of a bilateral series (one which is infinite in 
both directions), for 

7TCOt7TZ= l im s , 
rt—>00 ^ " ^ 

1 

z — m 
m = — n 

oo / \ oo 

2-i \z-m~ ±-m)= 2J 
m= — oo \ 2 / —oo 

G-*) 
\-m) _^ (m-z)[m-\) 

and 

^ - 2 
oo 

1 
2 ^ -^ / \2 (sin77z) M=-OO (z — n) 

However, it was a very fruitful discovery. Initially Jacobi, in his treatment 
of elliptic functions in Fundamenta Nova Theoriae Functionum Ellipticarum, 
1829, derived results about theta functions as consequences of results on 
elliptic functions. Later he reversed this procedure and used theta func­
tions to derive facts about elliptic functions. The function "L^^q^x" had 
occurred in Fourier's work on the heat equation, and Poisson derived a 
very important transformation of this function, but the realization that this 
function was fundamental is due to Jacobi. Recently a new setting for this 
function has been discovered which ties it up with a group-theoretic 
approach similar to that outlined above. The relevant group is the three-di­
mensional Heisenberg group, the group of matrices 

1 
0 
0 

z 
1 
0 

y 
X 

1 
o 
6 

(See Cartier [3] and Auslander and Tolimieri [1].) Other basic hypergeo- ± 
metric series are orthogonal polynomials that arise as spherical functions g 
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Foreword xxni 

on discrete two-point homogeneous spaces with certain Chevalley groups 
acting on these spaces. It is too early in the development of these ideas to 
say how important they will be, but I am reasonably sure that some 
important results will be obtained from them. In the nineteenth century 
elliptic functions were studied exhaustively and they seemed to have a 
secure place in the mathematics curriculum. Many ideas arose out of 
scholars' efforts to understand them. However, they themselves have not 
been as useful as one would have hoped, and as a result their place in the 
standard curriculum was taken by other subjects that were thought to be 
more useful, and for decades the knowledge of elliptic functions was 
largely restricted to number theorists and some applied mathematicians 
and engineers. Now many people who study and use combinatorial argu­
ments are going to have to learn something about basic hypergeometnc 
series. This will include statisticians interested in block designs and many 
people studying and using computer algorithms. They play a central role in 
the study of partitions, the subject of Volume 2 (The Theory of Partitions) 
in this Encyclopedia. 

Another development in the study of special functions in the last century 
was the introduction of differential equations with more than three regular 
singular points. Riemann observed that Euler's differential equation 

x(l-x)y" + [c-(a + b+l)x]/-aby=09 y = 2Fl ( f l ^ ; x ) , 

has regular singular points at x = 0, 1, oo, and by a linear fractional 
transformation these singular points can be put at three arbitrary points. 
The resulting differential equation is determined by the location of these 
singularities and certain parameters which determine the nature of the 
solutions in neighborhoods of the singular points. He showed how to 
obtain the results of Gauss, Kummer, and some of Jacobi's work on 
hypergeometnc series in a simple way and found a cubic transformation 
which is still not really understood. However, the real importance of this 
work was the realization that the singularities of a differential equation 
determine much more about the solutions than one would have thought. 
Other differential equations were introduced; Heun, Mathieu, Lame, and 
those for spheroidal wave functions are examples. These often arose when 
the wave equation or Laplace's equation was reduced to ordinary differen­
tial equations by separating variables. The solutions to these equations give 
interesting special functions which are much more complicated than hyper-

^ geometric functions. It is still not clear how best to study these functions, 
£> and one hopes that the algebraic methods used by Miller in this book will 
2 allow us to really understand these important functions. 
g Appell introduced hypergeometnc functions of two variables and found 
Z analogues of some of the useful facts about the ordinary hypergeometnc 
£ function for them. However, a real understanding of hypergeometnc 
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XXIV Foreword 

functions in two variables still lies in the future, though we now have a few 
ways of treating parts of this subject that have been fruitful. 

Pincherle, and later Mellin and Barnes, introduced a new way of 
treating hypergeometric series and functions. They integrated quotients of 
gamma functions and were able to perform analytic continuations with 
ease. The type of integrals they considered has arisen in many different 
places, from Mehler's earlier work on electrical problems with conical 
symmetry to Bargmann's work on representations of the Lorentz group. 

Poincare discovered an important extension of elliptic functions when he 
introduced automorphic functions. They have been extended to several 
variables in a number of ways. One of the most fruitful is due to Siegel and 
involves functions of matrix argument. Matrix argument gamma functions 
were introduced somewhat earlier by Ingham, who was led to them by 
work of statisticians. In terms of the special functions that are useful in 
applied mathematics, the main usefulness of automorphic functions will 
probably be the methods that were used to develop a theory in several 
variables; for although the theory of hypergeometric and basic hypergeo­
metric functions in several variables is largely undeveloped, enough results 
have been obtained to indicate that many deep results can be found. A 
recent example is the work of Macdonald on identities similar to the triple 
product for the theta function, which he derived from affine root systems 
of the classical Lie algebras. Feynman integrals can be considered as 
multivariate hypergeometric functions [4], as are the 3n—j symbols which 
are used to decompose tensor products of representations of SU(2) [2]. 
Both of these are very useful, yet far from understood. So this area of 
mathematics is no different than most other parts of mathematics; the 
pressing problems are to understand what happens in several variables. 

One term which has not been defined so far is "special function." My 
definition is simple, but not time invariant. A function is a special function 
if it occurs often enough so that it gets a name. There are a number of very 
important special functions which do not fit into the framework outlined 
earlier—for example, the Riemann zeta function, which plays a central role 
in the study of primes and many other number-theoretic problems. Other 
examples are the Bernoulli polynomials and Bernoulli numbers. Bernoulli 
numbers were introduced to aid in the computation of series, and they now 
appear in many unexpected places. 

Harry Bateman had a list of over a thousand special functions. Although 
many of these were special hypergeometric series with no reason for having 
a separate name, since everything that was known about them WaS a rn 
special case of facts known about a more general hypergeometric series, £ 
there are clearly too many functions to make it worthwhile to write books ^ 
on each of them. However, some of them have so many interesting 2 
properties and occur so often that it is essential that each generation of g 
mathematicians consider them anew and record their results for others to 22 
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use. It is too early to say exactly what books on special functions will 
appear in this series, but at present there is no adequate treatment of 
hypergeometric and basic hypergeometric series. There are a few books 
that treat special functions from an algebraic point of view [5, 7, 8], but 
none of these contain the very interesting work on the unitary group which 
led to addition formulas for Jacobi and Laguerre polynomials and for the 
disk polynomials, an important class of orthogonal polynomials in two 
variables. The discrete orthogonal polynomials have also not been treated 
in an adequate way. Books on all these topics will be written. 

There have also been some very interesting applications of special 
functions to combinatorial problems that have only partially been treated 
in previously mentioned Volumes 2 and 3 in this Encyclopedia. Beyond 
this we will have to wait and see what develops. If experience is a guide, we 
will be surprised by the next development. Such developments are predict­
able in retrospect, but not before the fact. 

RICHARD ASKEY 

General Editor, Section on 
Special Functions 
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Preface 

This book is concerned with the relationship between symmetries of a 
linear second-order partial differential equation of mathematical physics, 
the coordinate systems in which the equation admits solutions via separa­
tion of variables, and the properties of the special functions that arise in 
this manner. It is an introduction intended for anyone with experience in 
partial differential equations, special functions, or Lie group theory, such 
as group theorists, applied mathematicians, theoretical physicists and 
chemists, and electrical engineers. We will exhibit some modern group-the­
oretic twists in the ancient method of separation of variables that can be 
used to provide a foundation for much of special function theory. In 
particular, we will show explicitly that all special functions that arise via 
separation of variables in the equations of mathematical physics can be 
studied using group theory. These include the functions of Lame, Ince, 
Mathieu, and others, as well as those of hypergeometric type. 

This is a very critical time in the history of group-theoretic methods in 
special function theory. The basic relations between Lie groups, special 
functions, and the method of separation of variables have recently been 
clarified. One can now construct a group-theoretic machine that, when 
applied to a given differential equation of mathematical physics, describes 
in a rational manner the possible coordinate systems in which the equation 
admits solutions via separation of variables and the various expansion 
theorems relating the separable (special function) solutions in distinct 
coordinate systems. Indeed for the most important linear equations, the 
separated solutions are characterized as common eigenfunctions of sets of 
second-order commuting elements in the universal enveloping algebra of 
the Lie symmetry algebra corresponding to the equation. The problem of 
expanding one set of separable solutions in terms of another reduces to a 
problem in the representation theory of the Lie symmetry algebra. 

Although this method is simple, elegant, and very useful, it has as yet 
been applied to relatively few differential equations. (At the time of this 
writing, the wave equation (3„ — A3)^ = 0 is still under intensive study.) 
Moreover, few theorems have yet been proved that delineate the full scope 
of the method. It is the author's hope that the present work, which is aimed 
at a general audience rather than at specialists, will convince the reader 
that group-theoretic methods are singularly appropriate for the study of 
separation of variables and special functions. It is also hoped that this 
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XXV111 Preface 

work will encourage others to enter the field and solve the many interest­
ing problems that remain. 

The ideas relating Lie groups, special functions, and separation of 
variables spring from a number of rather diverse historical sources. The 
first deep work on the relationship of group representation theory and 
special functions is commonly attributed to E. Cartan (27). However, the 
first detailed use of the relationship for computational purposes is prob­
ably found in the papers of Wigner. Wigner's work on this subject began in 
the 1930s and is given an elementary exposition in his 1955 Princeton 
lecture notes. These notes were later expanded and updated in a book by 
Talman (124). 

A second major contributor to the computational theory is Vilenkin, 
who wrote a series of papers commencing in 1956 and culminating in his 
book (128). This encyclopedic treatise was strongly influenced by the 
explicit constructions of irreducible representations of the classical groups 
due to Gel'fand and Naimark (e.g., (41)). Vilenkin (and Wigner) obtain 
special functions as matrix elements of operators defining irreducible 
group representations. 

Another precursor of our theory is the factorization method. The 
method was discovered by Schrodinger and applied to solve the time-inde­
pendent Schrodinger equation for a number of systems of physical interest 
(e.g., (117)). This useful tool for computing eigenvalues and recurrence 
relations for solutions of second-order ordinary differential equations was 
developed by several authors, including Infeld and Hull (52), who 
summarized the state of the theory as of 1951. An independent and 
somewhat different development was given by Inoui (53). 

The author contributed to this theory by showing, in 1964 (80), that the 
factorization method was equivalent to the representation theory of four 
Lie algebras. 

Another approach to the subject matter of this book is contained in 
three remarkable papers by Weisner (133-135), the first appearing in 1955. 
Weisner showed the group-theoretic significance of families of generating 
functions for hypergeometric, Hermite, and Bessel functions. In these 
papers are also found examples of separable coordinate systems char­
acterized in terms of Lie algebra symmetry operators. Weisner's theory is 
extended and related to the factorization method in the author's mono­
graph (82). This monograph is primarily devoted to the representation 
theory of local Lie groups rather than the theory of global Lie groups, 
which is treated in the works of Talman and Vilenkin. 

We should also mention Truesdell's monograph on the F equation (126), 
which demonstrated how generating functions and integral representations 
for special functions can be derived directly from a knowledge of the 
differential recurrence relations obeyed by the special functions. By 1968 it 
was recognized that Truesdell's technique fits comfortably into the group-
theoretic approach to special functions (82). 
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A major theme in the present work is that separable coordinate systems 
for second-order linear partial differential equations can be characterized 
in terms of sets of second-order symmetry operators for the equations. This 
idea is very natural from a quantum-mechanical point of view. Moreover, 
since the work of Lie, it has been known to be correct for certain simple 
coordinates, such as spherical, cylindrical, and Cartesian (i.e., subgroup) 
coordinates. For a few important Schrodinger equations, such as the 
equation for the hydrogen atom, operator characterizations of a few 
nonsubgroup coordinates were well known (9, 30). However, the explicit 
statement of the relationship between symmetry and separation of vari­
ables appeared for the first time in the 1965 paper (138) by Winternitz and 
Fris. These authors gave group-theoretic characterizations of the separable 
coordinate systems corresponding to the eigenvalue equations for the 
Laplace-Beltrami operators on two-dimensional spaces with constant 
curvature. This work was extended by Winternitz and collaborators in (74, 
106, 139, 140). Finally, the author in collaboration with C. P. Boyer and E. 
G. Kalnins has classified group theoretically the separable coordinate 
systems for a number of important partial differential equations and 
investigated the relationship between the classification and special function 
theory. One interesting feature of this work, primarily due to Kalnins, has 
been the discovery of many new separable systems that are not contained 
in such standard references as (97). A second feature has been the 
development of a group-theoretic method that makes it possible to derive 
identities for nonhypergeometric special functions, such as Mathieu, Lame, 
spheroidal, Ince, and anharmonic oscillator functions, as well as for the 
more familiar hypergeometric functions. 

Prerequisites for understanding this book include some acquaintance 
with Lie groups and algebras (i.e., homomorphism and isomorphism of 
groups and algebras) such as can be found in (43) and (85). However, the 
examples treated here are very explicit and can be understood with only a 
minimal knowledge of Lie theory. Secondly, it is assumed that the reader 
has some experience in the solution of partial differential equations by 
separation of variables, in, say, rectangular, polar, and spherical coordi­
nates. 

Due to limitations of space, time, and the author's competence, it has 
been found necessary to omit certain topics. The most important among 
these is the theory of spherical functions on groups. This topic, a generali­
zation of the theory of spherical harmonics, has an extensive literature 
(e.g., [47, 130]). Moreover, spherical functions were recently used to derive 
an addition theorem for Jacobi polynomials (68, 119). However, spherical 
functions are always associated with subgroup coordinates, and even for 
the most elementary equations considered in this book, they fail to encom­
pass all of the special functions that arise via separation of variables. 

Boundary value problems have also been omitted, even though symme­
try methods are important for their solution (see [16]). This last reference, 
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as well as (105) and (38) contain discussions of symmetry techniques for 
finding solutions of nonlinear partial differential equations, a subject that 
has been omitted here because its ultimate forum is not yet clear. 

I should like to thank Paul Winternitz for helpful discussions leading to 
the basic concepts relating symmetry and separation of variables. Finally, I 
wish to thank Charles Boyer and Ernie Kalnins, without whose research 
collaboration this book could not have been written. 

WILLARD MILLER, JR. 
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