Learning the Art of Electronics

This introduction to circuit design is unusual in several respects. First, it offers not just explanations, but a full lab course. Each of the 25 daily sessions begins with a discussion of a particular sort of circuit followed by the chance to try it out and see how it actually behaves. Accordingly, students understand the circuit’s operation in a way that is deeper and much more satisfying than the manipulation of formulas.

Second, it describes circuits that more traditional engineering introductions would postpone: thus, on the third day, we build a radio receiver; on the fifth day, we build an operational amplifier from an array of transistors. The digital half of the course centers on applying microcontrollers, but gives exposure to Verilog, a powerful Hardware Description Language.

Third, it proceeds at a rapid pace but requires no prior knowledge of electronics. Students gain intuitive understanding through immersion in good circuit design.

- Each session is divided into several parts, including Notes, Labs; many also have Worked Examples and Supplementary Notes
- An appendix introducing Verilog
- Further appendices giving background facts on oscilloscopes, Xilinx, transmission lines, pinouts, programs etc, plus advice on parts and equipment
- Very little math: focus is on intuition and practical skills
- A final chapter showcasing some projects built by students taking the course over the years

Thomas C. Hayes reached electronics via a circuitous route that started in law school and eventually found him teaching Laboratory Electronics at Harvard, which he has done for thirty-five years. He has also taught electronics for the Harvard Summer School, the Harvard Extension School, and for seventeen years in Boston University's Department of Physics. He shares authorship of one patent, for a device that logs exposure to therapeutic bright light. He and his colleagues are trying to launch this device with a startup company named Goodlux Technologies. Tom designs circuits as the need for them arises in the electronics course. One such design is a versatile display, serial interface and programmer for use with the microcomputer that students build in the course.

Paul Horowitz is a Research Professor of Physics and of Electrical Engineering at Harvard University, where in 1974 he originated the Laboratory Electronics course from which emerged The Art of Electronics.
Learning the Art of Electronics

A Hands-On Lab Course

Thomas C. Hayes

with the assistance of Paul Horowitz
For Debbie, Tessa, Turner and Jamie

And in memory of my beloved friend, Jonathan
Contents

Preface

Overview, as the Course begins

Part I Analog: Passive Devices

1N DC Circuits
1N.1 Overview
1N.2 Three laws
1N.3 First application: voltage divider
1N.4 Loading, and “output impedance”
1N.5 Readings in AoE

1L Lab: DC Circuits
1L.1 Ohm’s law
1L.2 Voltage divider
1L.3 Converting a meter movement into a voltmeter and ammeter
1L.4 The diode
1L.5 I versus V for some mystery boxes
1L.6 Oscilloscope and function generator

1S Supplementary Notes: Resistors, Voltage, Current
1S.1 Reading resistors
1S.2 Voltage versus current

1W Worked Examples: DC circuits
1W.1 Design a voltmeter, current meter
1W.2 Resistor power dissipation
1W.3 Working around imperfections of instruments
1W.4 Thevenin models
1W.5 “Looking through” a circuit fragment, and R_{in}, R_{out}
1W.6 Effects of loading

2N RC Circuits
2N.1 Capacitors
2N.2 Time-domain view of RCs
2N.3 Frequency domain view of RCs
2N.4 Blocking and decoupling
viii Contents

2N.5 A somewhat mathy view of RC filters 76
2N.6 Readings in AoE 77

2L Labs: Capacitors 78
2L.1 Time-domain view 78
2L.2 Frequency domain view 81

2S Supplementary Notes: RC Circuits 85
2S.1 Reading capacitors 85
2S.2 C notes: trying for an intuitive grip on capacitors' behavior 90
2S.3 Sweeping frequencies 93

2W Worked Examples: RC Circuits 100
2W.1 RC filters 100
2W.2 RC step response 105

3N Diode Circuits 108
3N.1 Overloaded filter: another reason to follow our 10× loading rule 108
3N.2 Scope probe 109
3N.3 Inductors 112
3N.4 LC resonant circuit 113
3N.5 Diode Circuits 118
3N.6 The most important diode application: DC from AC 119
3N.7 The most important diode application: (unregulated-) power supply 123
3N.8 Radio! 126
3N.9 Readings in AoE 130

3L Lab: Diode Circuits 131
3L.1 LC resonant circuit 131
3L.2 Half-wave rectifier 133
3L.3 Full-wave bridge rectifier 134
3L.4 Design exercise: AM radio receiver (fun!) 135
3L.5 Signal diodes 136

3S Supplementary Notes and Jargon: Diode Circuits 138
3S.1 A puzzle: why LC’s ringing dies away despite Fourier 138
3S.2 Jargon: passive devices 139

3W Worked Examples: Diode Circuits 141
3W.1 Power supply design 141
3W.2 Z_{IN} 144

Part II Analog: Discrete Transistors 149

4N Transistors I 151
4N.1 Overview of Days 4 and 5 151
4N.2 Preliminary: introductory sketch 154
Contents ix

4N.3 The simplest view: forgetting beta 155
4N.4 Add quantitative detail: use beta explicitly 158
4N.5 A strikingly different transistor circuit: the switch 166
4N.6 Recapitulation: the important transistor circuits at a glance 167
4N.7 AoE Reading 168

4L Lab: Transistors I 169
4L.1 Transistor preliminaries: look at devices out of circuit 169
4L.2 Emitter follower 170
4L.3 Current source 172
4L.4 Common-emitter amplifier 172
4L.5 Transistor switch 174
4L.6 A note on power supply noise 176

4W Worked Examples: Transistors I 178
4W.1 Emitter follower 178
4W.2 Phase splitter: input and output impedances of a transistor circuit 181
4W.3 Transistor switch 185

5N Transistors II 188
5N.1 Some novelty, but the earlier view of transistors still holds 188
5N.2 Reviewish: phase splitter 189
5N.3 Another view of transistor behavior: Ebers–Moll 190
5N.4 Complication: distortion in a high-gain amplifier 194
5N.5 Complications: temperature instability 196
5N.6 Reconciling the two views: Ebers–Moll meets $I_C = \beta \times I_B$ 201
5N.7 “Difference” or “differential” amplifier 201
5N.8 Postscript: deriving r_e 207
5N.9 AoE Reading 208

5L Lab: Transistors II 209
5L.1 Difference or differential amplifier 209

5S Supplementary Notes and Jargon: Transistors II 220
5S.1 Two surprises, perhaps, in behavior of differential amp 220
5S.2 Current mirrors; Early effect 222
5S.3 Transistor summary 230
5S.4 Important circuits 232
5S.5 Jargon: bipolar transistors 235

5W Worked Examples: Transistors II 237
5W.1 High-gain amplifiers 237
5W.2 Differential amplifier 238
5W.3 Op-amp innards: diff-amp within an IC operational amplifier 239
Part III Analog: Operational Amplifiers and their Applications

6N Op-amps I

- 6N.1 Overview of feedback
- 6N.2 Preliminary: negative feedback as a general notion
- 6N.3 Feedback in electronics
- 6N.4 The op-amp golden rules
- 6N.5 Applications
- 6N.6 Two amplifiers
- 6N.7 Inverting amplifier
- 6N.8 When do the Golden Rules apply?
- 6N.9 Strange things can be put into feedback loop
- 6N.10 AoE Reading

6L Lab: Op-Amps I

- 6L.1 A few preliminaries
- 6L.2 Open-loop test circuit
- 6L.3 Close the loop: follower
- 6L.4 Non-inverting amplifier
- 6L.5 Inverting amplifier
- 6L.6 Summing amplifier
- 6L.7 Design exercise: unity-gain phase shifter
- 6L.8 Push–pull buffer
- 6L.9 Current to voltage converter
- 6L.10 Current source

6W Worked Examples: Op-Amps I

- 6W.1 Basic difference amp made with an op-amp
- 6W.2 A more exotic difference amp
- 6W.3 Problem: odd summing circuit

7N Op-amps II: Departures from Ideal

- 7N.1 Old: subtler cases, for analysis
- 7N.2 Op-amp departures from ideal
- 7N.3 Four more applications
- 7N.4 Differentiator
- 7N.5 Op-amp Difference Amplifier
- 7N.6 AC amplifier: an elegant way to minimize effects of op-amp DC errors
- 7N.7 AoE Reading

7L Labs: Op-Amps II

- 7L.1 Integrator
- 7L.2 Differentiator
- 7L.3 Slew rate
- 7L.4 AC amplifier: microphone amplifier

7S Supplementary Notes: Op-Amp Jargon
Contents

7W Worked Examples: Op-Amps II
 7W.1 The problem
 7W.2 Op-amp millivoltmeter

8N Op-Amps III: Nice Positive Feedback
 8N.1 Useful positive feedback
 8N.2 Comparators
 8N.3 RC relaxation oscillator
 8N.4 Sine oscillator: Wien bridge
 8N.5 AoE Reading

8L Lab. Op-Amps III
 8L.1 Two comparators
 8L.2 Op-amp RC relaxation oscillator
 8L.3 Easiest RC oscillator, using IC Schmitt trigger
 8L.4 Apply the sawtooth: PWM motor drive
 8L.5 IC RC relaxation oscillator: ’555
 8L.6 ’555 for low-frequency frequency modulation ("FM")
 8L.7 Sinewave oscillator: Wien bridge

8W Worked Examples: Op-Amp III
 8W.1 Schmitt trigger design tips
 8W.2 Problem: heater controller

9N Op-Amps IV: Parasitic Oscillations; Active Filter
 9N.1 Introduction
 9N.2 Active filters
 9N.3 Nasty “parasitic” oscillations: the problem, generally
 9N.4 Parasitic oscillations in op-amp circuits
 9N.5 Op-amp remedies for keeping loops stable
 9N.6 A general criterion for stability
 9N.7 Parasitic oscillation without op-amps
 9N.8 Remedies for parasitic oscillation
 9N.9 Recapitulation: to keep circuits quiet...
 9N.10 AoE Reading

9L Labs. Op-Amps IV
 9L.1 VCVS active filter
 9L.2 Discrete transistor follower
 9L.3 Op-amp instability: phase shift can make an op-amp oscillate
 9L.4 Op-amp with buffer in feedback loop

9S Supplementary Notes. Op-Amps IV
 9S.1 Op-amp frequency compensation
 9S.2 Active filters: how to improve a simple RC filter
 9S.3 Noise: diagnosing fuzz
 9S.4 Annotated LF411 op-amp schematic
 9S.5 Quantitative effects of feedback
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9W</td>
<td>Worked Examples: Op-Amps IV</td>
<td>401</td>
</tr>
<tr>
<td>9W.1</td>
<td>What all that op-amp gain does for us</td>
<td>401</td>
</tr>
<tr>
<td>9W.2</td>
<td>Stability questions</td>
<td>402</td>
</tr>
<tr>
<td>10N</td>
<td>Op-Amps V: PID Motor Control Loop</td>
<td>407</td>
</tr>
<tr>
<td>10N.1</td>
<td>Examples of real problems that call for this remedy</td>
<td>408</td>
</tr>
<tr>
<td>10N.2</td>
<td>The PID motor control loop</td>
<td>408</td>
</tr>
<tr>
<td>10N.3</td>
<td>Designing the controller (custom op-amp)</td>
<td>410</td>
</tr>
<tr>
<td>10N.4</td>
<td>Proportional-only circuit: predicting how much gain the loop can tolerate</td>
<td>412</td>
</tr>
<tr>
<td>10N.5</td>
<td>Derivative, D</td>
<td>415</td>
</tr>
<tr>
<td>10N.6</td>
<td>AoE Reading</td>
<td>420</td>
</tr>
<tr>
<td>10L</td>
<td>Lab. Op-Amps V</td>
<td>421</td>
</tr>
<tr>
<td>10L.1</td>
<td>Introduction: why bother with the PID loop?</td>
<td>421</td>
</tr>
<tr>
<td>10L.2</td>
<td>PID motor control</td>
<td>422</td>
</tr>
<tr>
<td>10L.3</td>
<td>Add derivative of the error</td>
<td>428</td>
</tr>
<tr>
<td>10L.4</td>
<td>Add integral</td>
<td>430</td>
</tr>
<tr>
<td>10L.5</td>
<td>Scope images: effect of increasing gain, in P-only loop</td>
<td>432</td>
</tr>
<tr>
<td>11N</td>
<td>Voltage Regulators</td>
<td>433</td>
</tr>
<tr>
<td>11N.1</td>
<td>Evolving a regulated power supply</td>
<td>434</td>
</tr>
<tr>
<td>11N.2</td>
<td>Easier: 3-terminal IC regulators</td>
<td>439</td>
</tr>
<tr>
<td>11N.3</td>
<td>Thermal design</td>
<td>441</td>
</tr>
<tr>
<td>11N.4</td>
<td>Current sources</td>
<td>443</td>
</tr>
<tr>
<td>11N.5</td>
<td>Crowbar overvoltage protection</td>
<td>444</td>
</tr>
<tr>
<td>11N.6</td>
<td>A different scheme: switching regulators</td>
<td>445</td>
</tr>
<tr>
<td>11N.7</td>
<td>AoE Readings</td>
<td>450</td>
</tr>
<tr>
<td>11L</td>
<td>Lab: Voltage Regulators</td>
<td>451</td>
</tr>
<tr>
<td>11L.1</td>
<td>Linear voltage regulators</td>
<td>451</td>
</tr>
<tr>
<td>11L.2</td>
<td>A switching voltage regulator</td>
<td>457</td>
</tr>
<tr>
<td>11W</td>
<td>Worked Examples: Voltage Regulators</td>
<td>462</td>
</tr>
<tr>
<td>11W.1</td>
<td>Choosing a heat sink</td>
<td>462</td>
</tr>
<tr>
<td>11W.2</td>
<td>Applying a current-source IC</td>
<td>463</td>
</tr>
<tr>
<td>12N</td>
<td>MOSFET Switches</td>
<td>465</td>
</tr>
<tr>
<td>12N.1</td>
<td>Why we treat FETs as we do</td>
<td>465</td>
</tr>
<tr>
<td>12N.2</td>
<td>Power switching: turning something ON or OFF</td>
<td>469</td>
</tr>
<tr>
<td>12N.3</td>
<td>A power switch application: audio amplifier</td>
<td>471</td>
</tr>
<tr>
<td>12N.4</td>
<td>Logic gates</td>
<td>473</td>
</tr>
<tr>
<td>12N.5</td>
<td>Analog switches</td>
<td>474</td>
</tr>
<tr>
<td>12N.6</td>
<td>Applications</td>
<td>475</td>
</tr>
<tr>
<td>12N.7</td>
<td>Testing a sample-and-hold circuit</td>
<td>480</td>
</tr>
<tr>
<td>12N.8</td>
<td>AoE Reading</td>
<td>485</td>
</tr>
</tbody>
</table>
Contents

12L Lab: MOSFET Switches
12L.1 Power MOSFET 486
12L.2 Analog switches 489
12L.3 Switching audio amplifier 495

12S Supplementary Notes: MOSFET Switches
12S.1 A physical picture 497

13N Group Audio Project
13N.1 Overview: a day of group effort 503
13N.2 One concern for everyone: stability 506
13N.3 Sketchy datasheets for LED and phototransistor 507

13L Lab: Group Audio Project
13L.1 Typical waveforms 508
13L.2 Debugging strategies 509

Part IV Digital: Gates, Flip-Flops, Counters, PLD, Memory

14N Logic Gates
14N.1 Analog versus digital 513
14N.2 Number codes: Two's-complement 518
14N.3 Combinational logic 520
14N.4 The usual way to do digital logic: programmable arrays 526
14N.5 Gate types: TTL and CMOS 528
14N.6 Noise immunity 530
14N.7 More on gate types 533
14N.8 AoE Reading 535

14L Lab: Logic Gates
14L.1 Preliminary 537
14L.2 Input and output characteristics of integrated gates: TTL and CMOS 540
14L.3 Pathologies 541
14L.4 Applying IC gates to generate particular logic functions 543
14L.5 Gate innards; looking within the black box of CMOS logic 544

14S Supplementary Notes: Digital Jargon 548

14W Worked Examples: Logic Gates
14W.1 Multiplexing: generic 550
14W.2 Binary arithmetic 554

15N Flip-Flops
15N.1 Implementing a combinational function 568
15N.2 Active-low, again 569
15N.3 Considering gates as “Do this/do that” functions 573
15N.4 XOR as Invert/Pass* function 574
Contents

15N.5 OR as Set/Pass* function 575
15N.6 Sequential circuits generally, and flip-flops 575
15N.7 Applications: more debounceers 582
15N.8 Counters 583
15N.9 Synchronous counters 584
15N.10 Another flop application: shift-register 586
15N.11 AoE Reading 587

15L Lab: Flip-Flops 588
15L.1 A primitive flip-flop: SR latch 588
15L.2 D type 588
15L.3 Counters: ripple and synchronous 591
15L.4 Switch bounce, and three debounceers 592
15L.5 Shift register 594

15S Supplementary Note: Flip-Flops 597
15S.1 Programmable logic devices 597
15S.2 Flip-flop tricks 599

16N Counters 603
16N.1 Old topics 603
16N.2 Circuit dangers and anomalies 607
16N.3 Designing a larger, more versatile counter 610
16N.4 A recapitulation of useful counter functions 614
16N.5 Lab 16L’s divide-by-N counter 615
16N.6 Counting as a digital design strategy 616

16L Lab: Counters 617
16L.1 A fork in the road: two paths into microcontrollers 617
16L.2 Counter lab 619
16L.3 16-bit counter 621
16L.4 Make horrible music 629
16L.5 Counter applications: stopwatch 631

16W Worked Examples: Applications of Counters 634
16W.1 Modifying count length: strange-modulus counters 634
16W.2 Using a counter to measure period, thus many possible input quantities 636
16W.3 Bullet timer 642

17N Memory 648
17N.1 Buses 648
17N.2 Memory 651
17N.3 State machine: new name for old notion 655

17L Lab: Memory 661
17L.1 RAM 661
17L.2 State machines 663
17L.3 State machine using a PAL programmed in Verilog 669
| Contents |
|----------|----------------|
| **17S** | Supplementary Notes: Digital Debugging and Address Decoding 671 |
| 17S.1 | Digital debugging tips 671 |
| 17S.2 | Address decoding 675 |
| **17W** | Worked Examples: Memory 678 |
| 17W.1 | A sequential digital lock 678 |
| 17W.2 | Solutions 681 |
| **Part V** | Digital: Analog–Digital, PLL, Digital Project Lab 687 |
| **18N** | Analog ↔ Digital; PLL 689 |
| 18N.1 | Interfacing among logic families 689 |
| 18N.2 | Digital ↔ analog conversion, generally 693 |
| 18N.3 | Digital to analog (DAC) methods 697 |
| 18N.4 | Analog-to-digital conversion 701 |
| 18N.5 | Sampling artifacts 712 |
| 18N.6 | Dither 714 |
| 18N.7 | Phase-locked loop 716 |
| 18N.8 | AoE Reading 723 |
| **18L** | Lab: Analog ↔ Digital; PLL 724 |
| 18L.1 | Analog-to-digital converter 724 |
| 18L.2 | Phase-locked loop: frequency multiplier 729 |
| **18S** | Supplementary Notes: Sampling Rules; Sampling Artifacts 734 |
| 18S.1 | What’s in this chapter? 734 |
| 18S.2 | General notion: sampling produces predictable artifacts in the sampled data 734 |
| 18S.3 | Examples: sampling artifacts in time- and frequency-domains 735 |
| 18S.4 | Explanation? The images, intuitively 739 |
| **18W** | Worked Examples: Analog ↔ Digital 745 |
| 18W.1 | ADC 745 |
| 18W.2 | Level translator 748 |
| **19L** | Digital Project Lab 749 |
| 19L.1 | A digital project 749 |
| **Part VI** | Microcontrollers 755 |
| **20N** | Microprocessors 1 757 |
| 20N.1 | Microcomputer basics 757 |
| 20N.2 | Elements of a minimal machine 760 |
| 20N.3 | Which controller to use? 762 |
| 20N.4 | Some possible justifications for the hard work of the big-board path 764 |
| 20N.5 | Rediscover the micro’s control signals... 765 |
| 20N.6 | Some specifics of our lab computer: big-board branch 771 |
| 20N.7 | The first day on the SiLab branch 773 |
| 20N.8 | AoE Reading 778 |
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20L</td>
<td>Lab: Microprocessors 1</td>
<td>780</td>
</tr>
<tr>
<td>20L.1</td>
<td>Big-board Dallas microcomputer</td>
<td>780</td>
</tr>
<tr>
<td>20L.2</td>
<td>Install the GLUEP AL; wire it partially</td>
<td>781</td>
</tr>
<tr>
<td>20L.3</td>
<td>SiLabs 1: startup</td>
<td>792</td>
</tr>
<tr>
<td>20S</td>
<td>Supplementary Notes: Microprocessors 1</td>
<td>803</td>
</tr>
<tr>
<td>20S.1</td>
<td>PAL for microcomputers</td>
<td>803</td>
</tr>
<tr>
<td>20S.2</td>
<td>Note on SiLabs IDE</td>
<td>805</td>
</tr>
<tr>
<td>20W</td>
<td>Worked Examples: A Garden of Bugs</td>
<td>809</td>
</tr>
<tr>
<td>21N</td>
<td>Microprocessors 2. I/O, First Assembly Language</td>
<td>813</td>
</tr>
<tr>
<td>21N.1</td>
<td>What is assembly language? Why bother with it?</td>
<td>813</td>
</tr>
<tr>
<td>21N.2</td>
<td>Decoding, again</td>
<td>818</td>
</tr>
<tr>
<td>21N.3</td>
<td>Code to use the I/O hardware (big-board branch)</td>
<td>821</td>
</tr>
<tr>
<td>21N.4</td>
<td>Comparing assembly language with C code: keypad-to-display</td>
<td>824</td>
</tr>
<tr>
<td>21N.5</td>
<td>Subroutines: CALL</td>
<td>826</td>
</tr>
<tr>
<td>21N.6</td>
<td>Stretching operations to 16 bits</td>
<td>830</td>
</tr>
<tr>
<td>21N.7</td>
<td>AoE Reading</td>
<td>831</td>
</tr>
<tr>
<td>21L</td>
<td>Lab: Microprocessors 2</td>
<td>832</td>
</tr>
<tr>
<td>21L.1</td>
<td>Big-board: I/O. Introduction</td>
<td>832</td>
</tr>
<tr>
<td>21L.2</td>
<td>SiLabs 2: input; byte operations</td>
<td>844</td>
</tr>
<tr>
<td>21S</td>
<td>Supplementary Notes: 8051 Addressing Modes</td>
<td>857</td>
</tr>
<tr>
<td>21S.1</td>
<td>Getting familiar with the 8051’s addressing modes</td>
<td>857</td>
</tr>
<tr>
<td>21S.2</td>
<td>Some 8051 addressing modes illustrated</td>
<td>867</td>
</tr>
<tr>
<td>22N</td>
<td>Micro 3: Bit Operations</td>
<td>869</td>
</tr>
<tr>
<td>22N.1</td>
<td>BIT operations</td>
<td>869</td>
</tr>
<tr>
<td>22N.2</td>
<td>Digression on conditional branching</td>
<td>874</td>
</tr>
<tr>
<td>22L</td>
<td>Lab Micro 3. Bit Operations; Timers</td>
<td>881</td>
</tr>
<tr>
<td>22L.1</td>
<td>Big-board lab. Bit operations; interrupt</td>
<td>881</td>
</tr>
<tr>
<td>22L.2</td>
<td>SiLabs 3: Timers; PWM; Comparator</td>
<td>886</td>
</tr>
<tr>
<td>22W</td>
<td>Worked Examples. Bit Operations: An Orgy of Error</td>
<td>901</td>
</tr>
<tr>
<td>22W.1</td>
<td>The problem</td>
<td>901</td>
</tr>
<tr>
<td>22W.2</td>
<td>Lots of poor, and one good, solutions</td>
<td>901</td>
</tr>
<tr>
<td>22W.3</td>
<td>Another way to implement this “Ready” key</td>
<td>904</td>
</tr>
<tr>
<td>23N</td>
<td>Micro 4: Interrupts; ADC and DAC</td>
<td>905</td>
</tr>
<tr>
<td>23N.1</td>
<td>Big ideas from last time</td>
<td>905</td>
</tr>
<tr>
<td>23N.2</td>
<td>Interrupts</td>
<td>906</td>
</tr>
<tr>
<td>23N.3</td>
<td>Interrupt handling in C</td>
<td>911</td>
</tr>
<tr>
<td>23N.4</td>
<td>Interfacing ADC and DAC to the micro</td>
<td>912</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23N.5</td>
<td>Some details of the ADC/DAC labs</td>
<td>917</td>
</tr>
<tr>
<td>23N.6</td>
<td>Some suggested lab exercises, playing with ADC and DAC</td>
<td>921</td>
</tr>
<tr>
<td>23L</td>
<td>Lab Micro 4. Interrupts; ADC and DAC</td>
<td>926</td>
</tr>
<tr>
<td>23L.1</td>
<td>ADC → DAC</td>
<td>926</td>
</tr>
<tr>
<td>23L.2</td>
<td>SiLabs 4: Interrupt; DAC and ADC</td>
<td>931</td>
</tr>
<tr>
<td>23S</td>
<td>Supplementary Notes: Micro 4</td>
<td>946</td>
</tr>
<tr>
<td>23S.1</td>
<td>Using the RIDE assembler/compiler and simulator</td>
<td>946</td>
</tr>
<tr>
<td>23S.2</td>
<td>Debugging</td>
<td>951</td>
</tr>
<tr>
<td>23S.3</td>
<td>Waveform processing</td>
<td>955</td>
</tr>
<tr>
<td>24N</td>
<td>Micro 5. Moving Pointers, Serial Buses</td>
<td>959</td>
</tr>
<tr>
<td>24N.1</td>
<td>Moving pointers</td>
<td>959</td>
</tr>
<tr>
<td>24N.2</td>
<td>DPTR can be useful for SiLabs ’410, too: tables</td>
<td>964</td>
</tr>
<tr>
<td>24N.3</td>
<td>End tests in table operations</td>
<td>964</td>
</tr>
<tr>
<td>24N.4</td>
<td>Some serial buses</td>
<td>966</td>
</tr>
<tr>
<td>24N.5</td>
<td>Readings</td>
<td>974</td>
</tr>
<tr>
<td>24L</td>
<td>Lab Micro 5. Moving Pointers, Serial Buses</td>
<td>975</td>
</tr>
<tr>
<td>24L.1</td>
<td>Data table; SPI bus; timers</td>
<td>976</td>
</tr>
<tr>
<td>24L.2</td>
<td>SiLabs 5: serial buses</td>
<td>982</td>
</tr>
<tr>
<td>24S</td>
<td>Supplementary Note: Dallas Program Loader</td>
<td>993</td>
</tr>
<tr>
<td>24S.1</td>
<td>Dallas downloader</td>
<td>993</td>
</tr>
<tr>
<td>24S.2</td>
<td>Hardware required</td>
<td>993</td>
</tr>
<tr>
<td>24S.3</td>
<td>Procedure to try the loader: two versions</td>
<td>994</td>
</tr>
<tr>
<td>24S.4</td>
<td>Debugging: LOADER420, in case you can’t write to flash</td>
<td>999</td>
</tr>
<tr>
<td>24S.5</td>
<td>Debugging in case of trouble with COM port assignments</td>
<td>1000</td>
</tr>
<tr>
<td>24W</td>
<td>Worked Example: Table Copy, Four Ways</td>
<td>1003</td>
</tr>
<tr>
<td>24W.1</td>
<td>Several ways to copy a table</td>
<td>1003</td>
</tr>
<tr>
<td>25N</td>
<td>Micro 6: Data Tables</td>
<td>1006</td>
</tr>
<tr>
<td>25N.1</td>
<td>Input and output devices for a microcontroller</td>
<td>1006</td>
</tr>
<tr>
<td>25N.2</td>
<td>Task for big-board users: standalone micro</td>
<td>1008</td>
</tr>
<tr>
<td>25N.3</td>
<td>Task for SiLabs users: off-chip RAM</td>
<td>1009</td>
</tr>
<tr>
<td>25L</td>
<td>Lab: Micro 6: Standalone Microcontroller</td>
<td>1012</td>
</tr>
<tr>
<td>25L.1</td>
<td>Hardware alternatives: two ways to program the flash ROM</td>
<td>1012</td>
</tr>
<tr>
<td>25L.2</td>
<td>SiLabs 6: SPI RAM</td>
<td>1018</td>
</tr>
<tr>
<td>25L.3</td>
<td>Appendix: Program Listings</td>
<td>1021</td>
</tr>
<tr>
<td>26N</td>
<td>Project Possibilities: Toys in the Attic</td>
<td>1022</td>
</tr>
<tr>
<td>26N.1</td>
<td>One more microcontroller that may interest you</td>
<td>1023</td>
</tr>
<tr>
<td>26N.2</td>
<td>Projects: an invitation and a caution</td>
<td>1025</td>
</tr>
<tr>
<td>26N.3</td>
<td>Some pretty projects</td>
<td>1025</td>
</tr>
</tbody>
</table>
Contents

26N.4 Some other memorable projects 1030
26N.5 Games 1041
26N.6 Sensors, actuators, gadgets 1043
26N.7 Stepper motor drive 1049
26N.8 Project ideas 1051
26N.9 Two programs that could be useful: LCD, Keypad 1052
26N.10 And many examples are shown in AoE 1052
26N.11 Now go forth 1052

A A Logic Compiler or HDL: Verilog 1053
A.1 The form of a Verilog file: design file 1053
A.2 Schematics can help one to debug 1054
A.3 The form of a Verilog file: simulation testbench 1055
A.4 Self-checking testbench 1058
A.5 Flip-flops in Verilog 1060
A.6 Behavioral versus structural design description: easy versus hard 1064
A.7 Verilog allows hierarchical designs 1065
A.8 A BCD counter 1068
A.9 Two alternative ways to instantiate a sub-module 1070
A.10 State machines 1071
A.11 An instance more appropriate to state form: a bus arbiter 1073
A.12 Xilinx ISE offers to lead you by the hand 1076
A.13 Blocking versus non-blocking assignments 1077

B Using the Xilinx Logic Compiler 1080
B.1 Xilinx, Verilog, and ABEL: an overview 1080

C Transmission Lines 1089
C.1 A topic we have dodged till now 1089
C.2 A new case: transmission line 1090
C.3 Reflections 1092
C.4 But why do we care about reflections? 1094
C.5 Transmission line effects for sinusoidal signals 1097

D Scope Advice 1099
D.1 What we don’t intend to tell you 1099
D.2 What we’d like to tell you 1099

E Parts List 1105

F The Big Picture 1113

G “Where Do I Go to Buy Electronic Goodies?” 1114

H Programs Available on Website 1116
Contents

I Equipment
- I.1 Uses for This List
- I.2 Oscilloscope
- I.3 Function generator
- I.4 Powered breadboard
- I.5 Meters, VOM and DVM
- I.6 Power supply
- I.7 Logic probe
- I.8 Resistor substitution box
- I.9 PLD/FPGA programming pod
- I.10 Hand tools
- I.11 Wire

J Pinouts
- J.1 Analog
- J.2 Digital

Index
Preface

A book and a course

This is a book for the impatient. It’s for a person who’s eager to get at the fun and fascination of putting electronics to work. The course squeezes what we facetiously call “all of electronics” into about twenty-five days of class. Of course, it is nowhere near all, but we hope it is enough to get an eager person launched and able to design circuits that do their tasks well.

Our title claims that this volume, which obviously is a book, is also a course. It is that, because it embodies a class that Paul Horowitz and I taught together at Harvard for more than 25 years. It embodies that course with great specificity, providing what are intended as day-at-a-time doses.

A day at a time: Notes, Lab, Problems, Supplements

Each day’s dose includes not only the usual contents of a book on electronics – notes describing and explaining new circuits – but also a lab exercise, a chance to try out the day’s new notions by building circuits that apply these ideas. We think that building the circuits will let you understand them in a way that reading about them cannot.

In addition, nearly every day includes a worked example and many days include what we call “supplementary notes.” These – for example, early notes on how to read resistors and capacitors – are not for every reader. Some people don’t need the note because they already understand the topic. Others will skip the note because they don’t want to invest the time on a first pass through the book. That’s fine. That’s just what we mean by “supplementary:” it’s something (like a supplementary vitamin) that may be useful, but that you can quite safely live without.

What’s new?

If any reader is acquainted with the Student Manual…, published in 1989 to accompany the second edition of The Art of Electronics, it may be worth noting principal differences between this book and that one. First, this book means to be self-sufficient, whereas the earlier book was meant to be read alongside the larger work. Second, the most important changes in content are these:

- Analog:
 - we devote a day primarily to the intriguing and difficult topic of parasitic oscillations and their cures;
 - we give a day to building a “PID” circuit, stabilizing a feedback loop that controls a motor’s position. We apply signals that form three functions of an error signal, the difference between target voltage and output voltage: “Proportional” (P), “Integral” (I), and “Derivative” (D) functions of that difference.
Preface

• Digital:
 – application of Programmable Logic Devices (PLDs or “PALs”), programmed with the high-level hardware description language (HDL), Verilog;
 – a shift from use of a microprocessor to a microcontroller, in the computer section that concludes the course. This microcontroller, unlike a microprocessor, can operate with little or no additional circuitry, so it is well-suited to the construction of useful devices rather than computers.

• Website: The book’s website learningtheartofelectronics.com has a lot more things, in particular code in machine readable form. Appendix H lists these.

. . . And the style of this book

A reader will gather early on that this book, like the Student Manual is strikingly informal. Many figures are hand-drawn; notation may vary; explanations aim to help intuition rather than to offer a mathematical view of circuits. We emphasize design rather than analysis. And we try hard to devise applications for circuits that are fun: we like it when our designs make sounds (on a good day they emit music), and we like to see motors spin.

Who’s likely to enjoy this book and course

You need not resemble the students who take our course at the university, but you may be interested to know who they are, since the course evolved with them in mind. We teach the course in three distinct forms. Most of our students take it during fall and spring daytime classes at the College. There, about half are undergraduates in the sciences and engineering; the other half are graduate students, including a few cross-registered from MIT who need an introduction quicker (and, admittedly, less deep) than electronics courses offered down there. (We don’t get EE majors from there; we get people who want a less formal introduction to the subject.)

In the night version of the course, we get mostly older students, many of whom work with technology and who have become curious about what’s in the “box” that they work with. Most often the mysterious “box” is simply a computer, and the student is a programmer. Sometimes the “box” is a lab setup (we get students from medical labs, across the river), or an industrial control apparatus that the student would like to demystify.

In the summer version of the course, about half our students are rising high school seniors – and the ablest of these prove a point we’ve seen repeatedly: to learn circuit design you don’t need to know any substantial amount of physics or sophisticated math. We see this in the College course, too, where some of our outstanding students have been Freshmen (though most students are at least two or three years older).

And we can’t help boasting, as we did in the preface to the 1989 Student Manual, that once in a great while a professor takes our course, or at least sits in. One of these buttonholed one of us recently in a hallway, on a visit to the University where he was to give a talk. “Well, Tom,” he said, “one of your students finally made good.” He was modestly referring to the fact that he’d recently won a Nobel Prize. We wish we could claim that we helped him get it. We can’t. But we’re happy to have him as an alumnus.1

We expect that some of these notes will strike you as elementary, some as excessively dense: your

1 This was Frank Wilczek. He did sit quietly at the back of our class for a while, hoping for some insights into a simulation that he envisioned. If those insights came, they probably didn’t come from us.
reaction naturally will reflect the uneven experience you have had with the topics we treat. Some of you are sophisticated programmers, and will sail through the assembly-language programming near the course’s end; others will find it heavy going. That’s all right. The course out of which this book grew has a reputation as fun, and not difficult in one sense, but difficult in another: the concepts are straightforward; abstractions are few. But we do pass a lot of information to our students in a short time; we do expect them to achieve literacy rather fast. This course is a lot like an introductory language course, and we hope to teach by the method sometimes called immersion. It is the laboratory exercises that do the best teaching; we hope this book will help to make those exercises instructive. I have to add though, in the spirit of modern jurisprudence, a reminder to read the legal notice appended to this Preface.

The mother ship: Horowitz & Hill’s The Art of Electronics

Paul Horowitz launched this course, 40-odd years ago, and he and Winfield Hill wrote the book that, in its various editions, has served as textbook for this course. That book, now in its third edition and which we will refer to as “AoE,” remains the reference work on which we rely. We no longer require that students buy it as they take our course. It is so rich and dense that it might cause intellectual indigestion in a student just beginning his study of electronics. But we know that some of our students and readers will want to look more deeply into topics treated in this book, and to help those people we provide cross-references to AoE throughout this book. The fortunate student who has access to AoE can get more than this book by itself can offer.

Analog and digital: a possible split

In our College course we go through all the book’s material in one term of about thirteen weeks. In the night course, which meets just once each week, we do the same material in two terms. The first term treats analog (Days 1–13), the second treats digital (Days 14–26). We know that some other universities use the same split, analog versus digital. It is quite possible to do the digital half before the analog. Only on the first day of digital – when we ask that people build a logic gate from MOSFET switches – would a person without analog training need a little extra guidance. For the most part, the digital half treats its devices as black boxes that one need not crack open and understand. We do need to be aware of input and output properties, but these do not raise any subtle analog questions. It is also possible to pare the course somewhat, if necessary. We don’t like to see any of our labs missed, but we know that the summer version of the class, which compresses it all into a bit more than six weeks, makes the tenth lab optional (Day 10 presents a “PID” motor controller). And the summer course omits the gratifying but not-essential digital project lab, 20L, in which students build a device of their own design.

Who helped especially with this book

First, and most obviously, comes Paul Horowitz, my teacher long ago, my co-teacher for so many years, and all along a demanding and invaluable critic of the book as it evolved. Most of the book’s hand-drawn figures, as well, still are his handiwork. Without Paul and his support, this book would not exist.

Second, I want to acknowledge the several friends and colleagues who have looked closely at parts of the book and have improved and corrected these parts. Two are friends with whom I once taught,
and who thus not only are expert in electronics but also know the course well. These are Steve Morss and Jason Gallicchio. Steve and I taught together nearly thirty years ago. Back then, he helped me to try out and to understand new circuits. He then went off to found a company, but we stayed in touch, and when we began to use a logic compiler in the course (Verilog) I took advantage of his experience. Steve was generous with his advice and then with a close reading of our notes on the subject. As I first met Verilog’s daunting range of powers it was very good to be able to consult a patient and experienced practitioner.

Jason helped especially with the notes on sampling. He has the appealing but also intimidating quality of being unable to give half-power, light criticism. I was looking for pointers on details. The draft of my notes came back glowing red with his astute markups. I got more help than I’d hoped for – but, of course, that was good for the notes.

A happy benefit of working where I do is to be able to draw on the extremely knowledgeable people about me, when I’m stumped. Jim MacArthur runs the electronics shop, here, and is always overworked. I could count on finding him in his lab on most weekends, and, if I did, he would accept an interruption for questions either practical or deep. David Abrams is a similarly knowledgeable colleague who twice has helped me to explain to students results that I and the rest of us could not understand. With experience in industry as well as in teaching our course, David is another specially valuable resource.

Curtis Mead, one of Paul Horowitz’s graduate students, gave generously of his skill in circuit layout, to help us make the LCD board that we use in the digital parts of this course. Jake Connors, who had served as our teaching assistant, also helped to produce the LCD boards that Curtis had laid out. Randall Briggs, another of our former TAs, helped by giving a keen, close reading.

It probably goes without saying, but let’s say it: whatever is wrong in this book, despite the help I’ve had, is my own responsibility, my own contribution, not that of any wise advisor.

In the laborious process of producing readable versions of the book’s thousand-odd diagrams, two people gave essential help. My son, Jamie Hayes, helped first by drawing, and then by improving the digital images of scanned drawings. Ray Craighead, a skilled illustrator whom we found online, made up intelligently rendered computer images from our raggedy hand-drawn originals. He was able to do this in a style that does not jar too strikingly when placed alongside our many hand-drawn figures. We found no one else able to do what Ray did.

Then, when the pieces were approximately assembled, but still very ragged, the dreadfully hard job of putting the pieces together, finding inconsistencies and repetitions, cutting references to figures that had been cut, attempting to impose some consistency, (“Carry_Out” rather than “Carry_OUT” or “C_out” – at least on the same page – and so on), in 1000 pages or so, fell to my editor, David Tranah. He put up not only with the initial raggedness, but also with continual small changes, right to the end, and he did this soon after he had completed a similarly exhausting editing of AoE. For this unflagging effort I am both admiring and grateful.

And, finally, I should thank my wife, Debbie Mills, for tolerating the tiresome sight of me sitting, distracted, in many settings – on back porch, vacation terrace in Italy, fireside chair – poking away at revisions. She will be glad that the book, at last, is done.

2 See craighead.com.
Preface

Legal notice

In this book we have attempted to teach the techniques of electronic design, using circuit examples and data that we believe to be accurate. However, the examples, data, and other information are intended solely as teaching aids and should not be used in any particular application without independent testing and verification by the person making the application. Independent testing and verification are especially important in any application in which incorrect functioning could result in personal injury or damage to property.

For these reasons, we make no warranties, express or implied, that the examples, data, or other information in this volume are free of error, that they are consistent with industry standards, or that they will meet the requirements for any particular application. THE AUTHORS AND PUBLISHER EXPRESSLY DISCLAIM THE IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR ANY PARTICULAR PURPOSE, even if the authors have been advised of a particular purpose, and even if a particular purpose is indicated in the book. The authors and publisher also disclaim all liability for direct, indirect, incidental, or consequential damages that result from any use of the examples, data, or other information in this book.

In addition, we make no representation regarding whether use of the examples, data, or other information in this volume might infringe others’ intellectual property rights, including US and foreign patents. It is the reader’s sole responsibility to ensure that he or she is not infringing any intellectual property rights, even for use which is considered to be experimental in nature. By using any of the examples, data, or other information in this volume, the reader has agreed to assume all liability for any damages arising from or relating to such use, regardless of whether such liability is based on intellectual property or any other cause of action, and regardless of whether the damages are direct, indirect, incidental, consequential, or any other type of damage. The authors and publisher disclaim any such liability.
Overview, as the Course begins

The circuits of the first three days in this course are humbler than what you will see later, and the devices you meet here are probably more familiar to you than, say, transistors, operational amplifiers – or microprocessors: Ohm’s Law will surprise none of you; \(I = \frac{C}{dV/dt} \) probably sounds at least vaguely familiar.

But the circuit elements that this section treats – passive devices – appear over and over in later active circuits. So, if a student happens to tell us, “I’m going to be away on the day you’re doing Lab 2,” we tell her she will have to make up the lab somehow. We tell her that the second lab, on RC circuits, is the most important in the course. If you do not use that lab to cement your understanding of RC circuits – especially filters – then you will be haunted by muddled thinking for at least the remainder of the analog part of the course.

Resistors will give you no trouble; diodes will seem simple enough, at least in the view that we settle for: they are one-way conductors. Capacitors and inductors behave more strangely. We will see very few circuits that use inductors, but a great many that use capacitors. You are likely to need a good deal of practice before you get comfortable with the central facts of capacitors’ behavior – easy to state, hard to get an intuitive grip on: they pass AC, block DC, and only rarely cause large phase shifts.

We should also restate a word of reassurance: you can manage this course perfectly even if the “−j” in the expression for the capacitor’s impedance is completely unfamiliar to you. If you consult AoE, and after reading about complex impedances in AoE’s spectacularly dense Math Review (Appendix A) you feel that you must be spectacularly dense, don’t worry. That is the place in the course where the squeamish may begin to wonder if they ought to retreat to some slower-paced treatment of the subject. Do not give up at this point; hang on until you have seen transistors, at least. One of the most striking qualities of this book is its cheerful evasion of complexity whenever a simpler account can carry you to a good design. The treatment of transistors offers a good example, and you ought to stay with the course long enough to see that: the transistor chapter is difficult, but wonderfully simpler than most other treatments of the subject. You will begin designing useful transistor circuits on your first day with the subject.

It is also in the first three labs that you will get used to the lab instruments – and especially to the most important of these, the oscilloscope. It is a complex machine; only practice will teach you to use it well. Do not make the common mistake of thinking that the person next to you who is turning knobs so confidently, flipping switches and adjusting trigger level – all on the first or second day of the course – is smarter than you are. No, that person has done it before. In two weeks, you too will be making the scope do your bidding – assuming that you don’t leave the work to that person next to you, who knew it all from the start.

The images on the scope screen make silent and invisible events visible, though strangely abstracted as well; these scope traces will become your mental images of what happens in your circuits. The scope will serve as a time microscope that will let you see events that last a handful of nanoseconds:
Overview, as the Course begins

the length of time light takes to get from you to the person sitting a little way down the lab bench. You may even find yourself reacting emotionally to shapes on the screen, feeling good when you see a smooth, handsome sinewave, disturbed when you see the peaks of the sine clipped, or its shape warped; annoyed when fuzz grows on your waveforms.

Anticipating some of these experiences, and to get you in the mood to enjoy the coming weeks in which small events will paint their self-portraits on your screen, we offer you a view of some scope traces that never quite occurred, and that nevertheless seem just about right: just what a scope would show if it could. This drawing was posted on my door for years, and students who happened by would pause, peer, hesitate – evidently working a bit to put a mental frame around these not-quite-possible pictures. Sometimes a person would ask if these are scope traces. They are not, of course; the leap beyond what a scope can show was the artist’s: Saul Steinberg’s. Graciously, he has allowed us to show his drawing here. We hope you enjoy it. Perhaps it will help you to look on your less exotic scope displays with a little of the respect and wonder with which we have to look on the traces below.
Overview, as the Course begins

Drawing by Saul Steinberg, copyright Saul Steinberg Foundation; originally published in The New Yorker Magazine, 1979. reproduced with permission.