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1.1 The qualitative approach

Ninety percent of all physics is concerned with vibrations and waves of one
sort or another. The same basic thread runs through most branches of physical
science, from acoustics through engineering, fluid mechanics, optics, electro-
magnetic theory and X-rays to quantum mechanics and information theory. It
is closely bound to the idea of a signal and its spectrum. To take a simple
example: imagine an experiment in which a musician plays a steady note on a
trumpet or a violin, and a microphone produces a voltage proportional to the
instantaneous air pressure. An oscilloscope will display a graph of pressure
against time, F (t), which is periodic. The reciprocal of the period is the fre-
quency of the note, 440 Hz, say, for a well-tempered middle A – the tuning-up
frequency for an orchestra.

The waveform is not a pure sinusoid, and it would be boring and colourless
if it were. It contains ‘harmonics’ or ‘overtones’: multiples of the fundamental
frequency, with various amplitudes and in various phases,1 depending on the
timbre of the note, the type of instrument being played and on the player.
The waveform can be analysed to find the amplitudes of the overtones, and
a list can be made of the amplitudes and phases of the sinusoids which it
comprises. Alternatively a graph, A(ν), can be plotted (the sound-spectrum) of
the amplitudes against frequency (Fig. 1.1).

A(ν) is the Fourier transform of F (t).

Actually it is the modular transform, but at this stage that is a detail.
Suppose that the sound is not periodic – a squawk, a drumbeat or a crash

instead of a pure note. Then to describe it requires not just a set of overtones

1 ‘Phase’ here is an angle, used to define the ‘retardation’ of one wave or vibration with respect
to another. One wavelength retardation, for example, is equivalent to a phase difference of 2π .
Each harmonic will have its own phase, φm, indicating its position within the period.
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2 Physics and Fourier transforms

Fig. 1.1. The spectrum of a steady note: fundamental and overtones.

with their amplitudes, but a continuous range of frequencies, each present in
an infinitesimal amount. The two curves would then look like Fig. 1.2.

The uses of a Fourier transform can be imagined: the identification of a
valuable violin; the analysis of the sound of an aero-engine to detect a faulty
gear-wheel; of an electrocardiogram to detect a heart defect; of the light curve
of a periodic variable star to determine the underlying physical causes of the
variation: all these are current applications of Fourier transforms.

1.2 Fourier series

For a steady note the description requires only the fundamental frequency, its
amplitude and the amplitudes of its harmonics. A discrete sum is sufficient. We
could write

F (t) D a0 C a1 cos(2πν0t) C b1 sin(2πν0t) C a2 cos(4πν0t)

C b2 sin(4πν0t) C a3 cos(6πν0t) C � � � ,

where ν0 is the fundamental frequency of the note. Sines as well as cosines are
required because the harmonics are not necessarily ‘in step’ (i.e. ‘in phase’)
with the fundamental or with each other.

More formally:

F (t) D
1∑

nD�1
an cos(2πnν0t) C bn sin(2πnν0t) (1.1)

and the sum is taken from �1 to 1 for the sake of mathematical symmetry.
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1.2 Fourier series 3

Fig. 1.2. The spectrum of a crash: all frequencies are present.

This process of constructing a waveform by adding together a fundamental
frequency and overtones or harmonics of various amplitudes is called Fourier
synthesis.

There are alternative ways of writing this expression: since cos x D cos(�x)
and sin x D �sin(�x) we can write

F (t) D A0/2 C
1∑

nD1

An cos(2πnν0t) C Bn sin(2πnν0t) (1.2)

and the two expressions are identical, provided that we set An D a�n C an and
Bn D bn � b�n. A0 is divided by two to avoid counting it twice: as it is, A0 can
be found by the same formula that will be used to find all the An’s.
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4 Physics and Fourier transforms

Mathematicians and some theoretical physicists write the expression as

F (t) D A0/2 C
1∑

nD1

An cos(nω0t) C Bn sin(nω0t)

and there are entirely practical reasons, which are discussed later, for not writing
it this way.

1.3 The amplitudes of the harmonics

The alternative process – of extracting from the signal the various frequencies
and amplitudes that are present – is called Fourier analysis and is much more
important in its practical physical applications. In physics, we usually find the
curve F (t) experimentally and we want to know the values of the amplitudes
Am and Bm for as many values of m as necessary. To find the values of
these amplitudes, we use the orthogonality property of sines and cosines. This
property is that, if you take a sine and a cosine, or two sines or two cosines,
each a multiple of some fundamental frequency, multiply them together and
integrate the product over one period of that frequency, the result is always zero
except in special cases.

If P D 1/ν0 is one period, then
∫ P

tD0
cos(2πnν0t) � cos(2πmν0t)dt D 0

and ∫ P

tD0
sin(2πnν0t) � sin(2πmν0t)dt D 0

unless m D ˙n, and
∫ P

tD0
sin(2πnν0t) � cos(2πmν0t)dt D 0

always.
The first two integrals are both equal to 1/(2ν0) if m D n.
We multiply the expression (1.2) for F (t) by sin(2πmν0t) and the product

is integrated over one period, P :
∫ P

tD0
F (t)sin(2πmν0t)dt D A0

2

∫ P

tD0
sin(2πmν0t)dt

C
∫ P

tD0

1∑
nD1

fAn cos(2πnν0t) C Bn sin(2πnν0t)gsin(2πmν0t)dt (1.3)
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1.3 The amplitudes of the harmonics 5

and all the terms of the sum vanish on integration except

∫ P

0
Bm sin2(2πmν0t)dt D Bm

∫ P

0
sin2(2πmν0t)dt

D Bm/(2ν0) D BmP/2

so that

Bm D (2/P )
∫ P

0
F (t)sin(2πmν0t)dt (1.4)

and, provided that F (t) is known in the interval 0 ! P , the coefficient Bm can
be found. If an analytic expression for F (t) is known, the integral can often be
done. On the other hand, if F (t) has been found experimentally, a computer is
needed to do the integrations.

The corresponding formula for Am is

Am D (2/P )
∫ P

0
F (t)cos(2πmν0t)dt. (1.5)

The integral can start anywhere, not necessarily at t D 0, so long as it extends
over one period.

Example: Suppose that F (t) is a square-wave of period 1/ν0, so that F (t) D
h for t D �b/2 ! b/2 and 0 during the rest of the period, as in Fig. 1.3.
Then

Am D 2ν0

∫ 1/(2ν0)

�1/(2ν0)
F (t)cos(2πmν0t)dt

D 2hν0

∫ b/2

�b/2
cos(2πmν0t)dt

and the new limits cover only that part of the cycle where F (t) is different
from zero.

Fig. 1.3. A rectangular wave of period 1/ν0 and pulse-width b.
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6 Physics and Fourier transforms

If we integrate and put in the limits:

Am D 2hν0

2πmν0
fsin(πmν0b) � sin(�πmν0b)g

D 2h

πm
sin(πmν0b)

D 2hν0bfsin(πν0mb)/(πν0mb)g .

All the Bn’s are zero because of the symmetry of the function – we
took the origin to be at the centre of one of the pulses.

The original function of time can be written

F (t) D hν0b C 2hν0b

1∑
mD1

fsin(πν0mb)/(πν0mb)gcos(2πmν0t) (1.6)

or, alternatively,

F (t) D hb

P
C 2hb

P

1∑
mD1

fsin(πν0mb)/(πν0mb)gcos(2πmν0t). (1.7)

Notice that the first term, A0/2, is the average height of the function –
the area under the top-hat divided by the period; and that the function
sin(x)/x, called ‘sinc(x)’, which will be described in detail later, has the
value unity at x D 0, as can be shown using de l’Hôpital’s rule.2

There are other ways of writing the Fourier series. It is convenient occasion-
ally, though less often, to write Am D Rm cos φm and Bm D Rm sin φm, so that
equation (1.2) becomes

F (t) D A0

2
C

1∑
mD1

Rm cos(2πmν0t C φm) (1.8)

and Rm and φm are the amplitude and phase of the mth harmonic. A single
sinusoid then replaces each sine and cosine, and the two quantities needed to
define each harmonic are these amplitudes and phases in place of the previous
Am and Bm coefficients. In practice it is usually the amplitude, Rm, which is
important, since the energy in an oscillator is proportional to the square of the
amplitude of oscillation, and jRmj2 gives a measure of the power contained in
each harmonic of a wave. ‘Phase’ is a simple and important idea. Two wave
trains are ‘in phase’ if wave crests arrive at a certain point together. They are
‘out of phase’ if a trough from one arrives at the same time as the crest of the
other. (Alternatively, they have 180ı phase difference.) In Fig. 1.4 there are two

2 De l’Hôpital’s rule is that, if f (x) ! 0 as x ! 0 and φ(x) ! 0 as x ! 0, the ratio f (x)/φ(x)
is indeterminate, but is equal to the ratio (df/dx)/(dφ/dx) as x ! 0.
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1.3 The amplitudes of the harmonics 7

Fig. 1.4. Two wave trains with the same period but different amplitudes and
phases. The upper has 0.7 times the amplitude of the lower and there is a phase-
difference of 70ı.

wave trains. The upper has 0.7 times the amplitude of the other and it lags (not
leads, as it appears to do) the lower by 70ı. This is because the horizontal axis
of the graph is time, and the vertical axis measures the amplitude at a fixed
point as it varies with time. Wave crests from the lower wave train arrive earlier
than those from the upper. The important thing is that the ‘phase-difference’
between the two is 70ı.

The most common way of writing the series expansion is with complex
exponentials instead of trigonometrical functions. This is because the algebra
of complex exponentials is easier to manipulate. The two ways are linked, of
course, by de Moivre’s theorem. We can write

F (t) D
1∑

�1
Cme2πimν0t ,

where the coefficients Cm are now complex numbers in general and Cm D C��m.
(The exact relationship is given in detail in Appendix A.3.) The coefficients
Am, Bm and Cm are obtained from the inversion formulae:

Am D 2ν0

∫ 1/v0

0
F (t)cos(2πmν0t)dt,

Bm D 2ν0

∫ 1/v0

0
F (t)sin(2πmν0t)dt,

Cm D 2ν0

∫ 1/v0

0
F (t)e�2πmν0t dt
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8 Physics and Fourier transforms

(the minus sign in the exponent is important) or, if ω0 has been used instead of
ν0 (ν0 D ω0/(2π )), then

Am D (ω0/π )
∫ 2π/ω0

0
F (t)cos(mω0t)dt,

Bm D (ω0/π )
∫ 2π/ω0

0
F (t)sin(mω0t)dt,

Cm D (2ω0/π )
∫ 2π/ω0

0
F (t)e�imω0t dt.

The useful mnemonic form to remember for finding the coefficients in a Fourier
series is

Am D 2

period

∫
one period

F (t)cos

{
2πmt

period

}
dt, (1.9)

Bm D 2

period

∫
one period

F (t)sin

{
2πmt

period

}
dt (1.10)

and remember that the integral can be taken from any starting point, a, provided
that it extends over one period to an upper limit a C P . The integral can be
split into as many subdivisions as needed if, for example, F (t) has different
analytic forms in different parts of the period.

1.4 Fourier transforms

Whether F (t) is periodic or not, a complete description of F (t) can be given
using sines and cosines. If F (t) is not periodic it requires all frequencies to
be present if it is to be synthesized. A non-periodic function may be thought
of as a limiting case of a periodic one, where the period tends to infinity, and
consequently the fundamental frequency tends to zero. The harmonics are more
and more closely spaced and in the limit there is a continuum of harmonics,
each one of infinitesimal amplitude, a(ν)dν, for example. The summation sign
is replaced by an integral sign and we find that

F (t) D
∫ 1

�1
a(ν)dν cos(2πνt) C

∫ 1

�1
b(ν)dν sin(2πνt) (1.11)

or, equivalently,

F (t) D
∫ 1

�1
r(ν)cos(2πνt C φ(ν))dν (1.12)

or, again,

F (t) D
∫ 1

�1
�(ν)e2πiνt dν. (1.13)
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1.4 Fourier transforms 9

If F (t) is real, that is to say, if the insertion of any value of t into F (t) yields
a real number, then a(ν) and b(ν) are real too. However, �(ν) may be complex
and indeed will be if F (t) is asymmetrical so that F (t) 6D F (�t). This can
sometimes cause complications, and these are dealt with in Chapter 8: but F (t)
is often symmetrical and then �(ν) is real and F (t) comprises only cosines.
We could then write

F (t) D
∫ 1

�1
�(ν)cos(2πνt)dν

but, because complex exponentials are easier to manipulate, we take equation
(1.13) above as the standard form. Nevertheless, for many practical purposes
only real and symmetrical functions F (t) and �(ν) need be considered.

Just as with Fourier series, the function �(ν) can be recovered from F (t) by
inversion. This is the cornerstone of Fourier theory because, astonishingly, the
inversion has exactly the same form as the synthesis, and we can write, if �(ν)
is real and F (t) is symmetrical,

�(ν) D
∫ 1

�1
F (t)cos(2πνt)dt, (1.14)

so that not only is �(ν) the Fourier transform of F (t), but also F (t) is the
Fourier transform of �(ν). The two together are called a ‘Fourier pair’.

The complete and rigorous proof of this is long and tedious3 and it is not
necessary here; but the formal definition can be given and this is a suitable
place to abandon, for the moment, the physical variables time and frequency
and to change to the pair of abstract variables, x and p, which are usually used.
The formal statement of a Fourier transform is then

�(p) D
∫ 1

�1
F (x)e2πipx dx, (1.15)

F (x) D
∫ 1

�1
�(p)e�2πipx dp (1.16)

and this pair of formulae4 will be used from here on.

3 It is to be found, for example, in E. C. Titchmarsh, Introduction to the Theory of Fourier
Integrals, Clarendon Press, Oxford, 1962 or in R. R. Goldberg, Fourier Transforms, Cambridge
University Press, Cambridge, 1965.

4 Sometimes one finds

�(p) D 1

2π

∫ 1

�1
F (x)eipx dx; F (x) D

∫ 1

�1
�(p)e�ipx dp

as the defining equations, and again symmetry is preserved by some people by defining the
transform by

�(p) D
{

1

2π

}1/2 ∫ 1

�1
F (x)eipx dx; F (x) D

{
1

2π

}1/2 ∫ 1

�1
�(p)e�ipx dp.
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10 Physics and Fourier transforms

Symbolically we write

�(p) • F (x).

One and only one of the integrals must have a minus sign in the exponent.
Which of the two you choose does not matter, so long as you keep to the rule.
If the rule is broken half way through a long calculation the result is chaos; but
if someone else has used the opposite choice, the Fourier pair calculated of a
given function will be the complex conjugate of that given by your choice.

When time and frequency are the conjugate variables we shall use

�(ν) D
∫ 1

�1
F (t)e�2πiνt dt, (1.17)

F (t) D
∫ 1

�1
�(ν)2πiνt dν (1.18)

and again, symbolically,

�(ν) • F (t).

There are two good reasons for incorporating the 2π into the exponent.
Firstly the defining equations are easily remembered without worrying where
the 2π ’s go, but, more importantly, quantities like t and ν are actually physically
measured quantities – time and frequency – rather than time and angular
frequency, ω. Angular measure is for mathematicians. For example, when one
has to integrate a function wrapped around a cylinder it is convenient to use
the angle as the independent variable. Physicists will generally find it more
convenient to use t and ν, for example, with the 2π in the exponent.

1.5 Conjugate variables

Traditionally x and p are used when abstract transforms are considered and they
are called ‘conjugate variables’. Different fields of physics and engineering use
different pairs, such as frequency, ν, and time, t , in acoustics, telecommunica-
tions and radio; position, x, and momentum divided by Planck’s constant, p/h̄,
in quantum mechanics; and aperture, x, and the sine of the diffraction angle
divided by the wavelength, p D sin θ/λ, in diffraction theory.

In general we will use x and p as abstract entities and give them a physical
meaning when an illustration seems called for. It is worth remembering that
x and p have inverse dimensionality, as in time, t , and frequency, t�1. The
product px, like any exponent, is always a dimensionless number.

One further definition is needed: the ‘power spectrum’ of a function.5 This
notion is important in electrical engineering as well as in physics. If power

5 Actually the energy spectrum; ‘power spectrum’ is just the conventional term used in most
books. This is discussed in more detail in Chapter 4.
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