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Quantitative symplectic geometry
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Dedicated to Anatole Katok on the occasion of his sixtieth birthday

A symplectic manifold .M; !/ is a smooth manifold M endowed with a
nondegenerate and closed 2-form !. By Darboux’s Theorem such a manifold
looks locally like an open set in some �2n Š �n with the standard symplectic
form

!0 D
nX

jD1

dxj ^ dyj ; (0–1)

and so symplectic manifolds have no local invariants. This is in sharp contrast to
Riemannian manifolds, for which the Riemannian metric admits various curva-
ture invariants. Symplectic manifolds do however admit many global numerical
invariants, and prominent among them are the so-called symplectic capacities.

Symplectic capacities were introduced in 1990 by I. Ekeland and H. Hofer [18;
19] (although the first capacity was in fact constructed by M. Gromov [39]).
Since then, lots of new capacities have been defined [16; 29; 31; 43; 48; 58;
59; 88; 97] and they were further studied in [1; 2; 8; 9; 25; 20; 27; 30; 34;
36; 37; 40; 41; 42; 45; 47; 49; 51; 55; 56; 57; 60; 61; 62; 63; 65; 71; 72;
73; 86; 87; 89; 90; 92; 95; 96]. Surveys on symplectic capacities are [44; 49;
54; 66; 95]. Different capacities are defined in different ways, and so relations
between capacities often lead to surprising relations between different aspects
of symplectic geometry and Hamiltonian dynamics. This is illustrated in Sec-
tion 2, where we discuss some examples of symplectic capacities and describe
a few consequences of their existence. In Section 3 we present an attempt to
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2 K. CIELIEBAK, H. HOFER, J. LATSCHEV, AND F. SCHLENK

better understand the space of all symplectic capacities, and discuss some further
general properties of symplectic capacities. In Section 4, we describe several
new relations between certain symplectic capacities on ellipsoids and polydiscs.
Throughout the discussion we mention many open problems.

As illustrated below, many of the quantitative aspects of symplectic geometry
can be formulated in terms of symplectic capacities. Of course there are other
numerical invariants of symplectic manifolds which could be included in a dis-
cussion of quantitative symplectic geometry, such as the invariants derived from
Hofer’s bi-invariant metric on the group of Hamiltonian diffeomorphisms, [43;
79; 82], or Gromov–Witten invariants. Their relation to symplectic capacities is
not well understood, and we will not discuss them here.

We start out with a brief description of some relations of symplectic geometry
to neighboring fields.

1. Symplectic geometry and its neighbors

Symplectic geometry is a rather new and vigorously developing mathematical
discipline. The “symplectic explosion” is described in [21]. Examples of sym-
plectic manifolds are open subsets of

�
�2n; !0

�
, the torus �2n=�2n endowed

with the induced symplectic form, surfaces equipped with an area form, Kähler
manifolds like complex projective space ��n endowed with their Kähler form,
and cotangent bundles with their canonical symplectic form. Many more exam-
ples are obtained by taking products and through more elaborate constructions,
such as the symplectic blow-up operation. A diffeomorphism ' on a symplectic
manifold .M; !/ is called symplectic or a symplectomorphism if '�! D !.

A fascinating feature of symplectic geometry is that it lies at the crossroad of
many other mathematical disciplines. In this section we mention a few examples
of such interactions.

Hamiltonian dynamics. Symplectic geometry originated in Hamiltonian dy-
namics, which originated in celestial mechanics. A time-dependent Hamiltonian
function on a symplectic manifold .M; !/ is a smooth function H W ��M ! �.
Since ! is nondegenerate, the equation

!.XH ; � / D dH. � /

defines a time-dependent smooth vector field XH on M . Under suitable assump-
tion on H , this vector field generates a family of diffeomorphisms 't

H
called

the Hamiltonian flow of H . As is easy to see, each map 't
H

is symplectic. A
Hamiltonian diffeomorphism ' on M is a diffeomorphism of the form '1

H
.
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QUANTITATIVE SYMPLECTIC GEOMETRY 3

Symplectic geometry is the geometry underlying Hamiltonian systems. It
turns out that this geometric approach to Hamiltonian systems is very fruitful.
Explicit examples are discussed in Section 2 below.

Volume geometry. A volume form ˝ on a manifold M is a top-dimensional
nowhere vanishing differential form, and a diffeomorphism ' of M is volume
preserving if '�˝ D ˝. Ergodic theory studies the properties of volume pre-
serving mappings. Its findings apply to symplectic mappings. Indeed, since a
symplectic form ! is nondegenerate, !n is a volume form, which is preserved
under symplectomorphisms. In dimension 2 a symplectic form is just a volume
form, so that a symplectic mapping is just a volume preserving mapping. In
dimensions 2n � 4, however, symplectic mappings are much more special.
A geometric example for this is Gromov’s Nonsqueezing Theorem stated in
Section 2.2 and a dynamical example is the (partly solved) Arnol’d conjecture
stating that Hamiltonian diffeomorphisms of closed symplectic manifolds have
at least as many fixed points as smooth functions have critical points. For another
link between ergodic theory and symplectic geometry see [81].

Contact geometry. Contact geometry originated in geometrical optics. A con-
tact manifold .P; ˛/ is a .2n � 1/-dimensional manifold P endowed with a
1-form ˛ such that ˛ ^ .d˛/n�1 is a volume form on P . The vector field X on
P defined by d˛.X; � / D 0 and ˛.X / D 1 generates the so-called Reeb flow. The
restriction of a time-independent Hamiltonian system to an energy surface can
sometimes be realized as the Reeb flow on a contact manifold. Contact mani-
folds also arise naturally as boundaries of symplectic manifolds. One can study
a contact manifold .P; ˛/ by symplectic means by looking at its symplectization�
P � �; d.et˛/

�
, see e.g. [46; 22].

Algebraic geometry. A special class of symplectic manifolds are Kähler mani-
folds. Such manifolds (and, more generally, complex manifolds) can be studied
by looking at holomorphic curves in them. M. Gromov [39] observed that some
of the tools used in the Kähler context can be adapted for the study of symplectic
manifolds. One part of his pioneering work has grown into what is now called
Gromov–Witten theory, see e.g. [70] for an introduction.

Many other techniques and constructions from complex geometry are useful
in symplectic geometry. For example, there is a symplectic version of blowing-
up, which is intimately related to the symplectic packing problem, see [64; 68]
and 4.1.2 below. Another example is Donaldson’s construction of symplectic
submanifolds [17]. Conversely, symplectic techniques proved useful for study-
ing problems in algebraic geometry such as Nagata’s conjecture [5; 6; 68] and
degenerations of algebraic varieties [7].
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4 K. CIELIEBAK, H. HOFER, J. LATSCHEV, AND F. SCHLENK

Riemannian and spectral geometry. Recall that the differentiable structure of
a smooth manifold M gives rise to a canonical symplectic form on its cotangent
bundle T �M . Giving a Riemannian metric g on M is equivalent to prescribing
its unit cosphere bundle S�

g M � T �M , and the restriction of the canonical
1-form from T �M gives S�M the structure of a contact manifold. The Reeb
flow on S�

g M is the geodesic flow (free particle motion).
In a somewhat different direction, each symplectic form ! on some manifold

M distinguishes the class of Riemannian metrics which are of the form !.J � ; � /
for some almost complex structure J .

These (and other) connections between symplectic and Riemannian geometry
are by no means completely explored, and we believe there is still plenty to be
discovered here. Here are some examples of known results relating Riemannian
and symplectic aspects of geometry.

Lagrangian submanifolds. A middle-dimensional submanifold L of .M; !/

is called Lagrangian if ! vanishes on TL.
(i) Volume. Endow complex projective space ��n with the usual Kähler

metric and the usual Kähler form. The volume of submanifolds is taken with
respect to this Riemannian metric. According to a result of Givental–Kleiner–
Oh, the standard ��n in ��n has minimal volume among all its Hamiltonian
deformations [74]. A partial result for the Clifford torus in ��n can be found in
[38]. The torus S1 �S1 � S2 �S2 formed by the equators is also volume min-
imizing among its Hamiltonian deformations, [50]. If L is a closed Lagrangian
submanifold of

�
�2n; !0

�
, there exists according to [98] a constant C depending

on L such that

vol .'H .L// � C for all Hamiltonian deformations of L: (1–1)

(ii) Mean curvature. The mean curvature form of a Lagrangian submanifold
L in a Kähler–Einstein manifold can be expressed through symplectic invariants
of L, see [15].

The first eigenvalue of the Laplacian. Symplectic methods can be used to
estimate the first eigenvalue of the Laplace operator on functions for certain
Riemannian manifolds [80].

Short billiard trajectories. Consider a bounded domain U � �n with smooth
boundary. There exists a periodic billiard trajectory on U of length l with

ln � Cn vol.U / (1–2)

where Cn is an explicit constant depending only on n, see [98; 30].

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-17541-8 - Dynamics, Ergodic Theory, and Geometry: Dedicated to Anatole Katok
Edited by Boris Hasselblatt
Excerpt
More information

http://www.cambridge.org/9780521175418
http://www.cambridge.org
http://www.cambridge.org


QUANTITATIVE SYMPLECTIC GEOMETRY 5

2. Examples of symplectic capacities

In this section we give the formal definition of symplectic capacities, and
discuss a number of examples along with sample applications.

2.1. Definition. Denote by Symp2n the category of all symplectic manifolds of
dimension 2n, with symplectic embeddings as morphisms. A symplectic cate-
gory is a subcategory � of Symp2n such that .M; !/ 2 � implies .M; ˛!/ 2 �

for all ˛ > 0.

CONVENTION. We will use the symbol Œ to denote symplectic embeddings and
! to denote morphisms in the category � (which may be more restrictive).

Let B2n.r2/ be the open ball of radius r in �2n and Z2n.r2/ D B2.r2/��2n�2

the open cylinder (the reason for this notation will become apparent below). Un-
less stated otherwise, open subsets of �2n are always equipped with the canon-
ical symplectic form !0 D Pn

jD1 dyj ^ dxj . We will suppress the dimension
2n when it is clear from the context and abbreviate

B WD B2n.1/; Z WD Z2n.1/:

Now let � � Symp2n be a symplectic category containing the ball B and the
cylinder Z. A symplectic capacity on � is a covariant functor c from � to the
category .Œ0; 1�; �/ (with a � b as morphisms) satisfying

(MONOTONICITY): c.M; !/ � c.M 0; !0/ if there exists a morphism .M; !/ !
.M 0; !0/;

(CONFORMALITY): c.M; ˛!/ D ˛ c.M; !/ for ˛ > 0;
(NONTRIVIALITY): 0 < c.B/ and c.Z/ < 1.

Note that the (Monotonicity) axiom just states the functoriality of c. A sym-
plectic capacity is said to be normalized if

(NORMALIZATION): c.B/ D 1.

As a frequent example we will use the set Op2n of open subsets in �2n. We make
it into a symplectic category by identifying .U; ˛2!0/ with the symplectomor-
phic manifold .˛U; !0/ for U � �2n and ˛ > 0. We agree that the morphisms
in this category shall be symplectic embeddings induced by global symplec-
tomorphisms of �2n. With this identification, the (Conformality) axiom above
takes the form

(CONFORMALITY) 0: c.˛U / D ˛2c.U / for U 2 Op2n, ˛ > 0.
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6 K. CIELIEBAK, H. HOFER, J. LATSCHEV, AND F. SCHLENK

2.2. Gromov radius. In view of Darboux’s Theorem one can associate with
each symplectic manifold .M; !/ the numerical invariant

cB.M; !/ WD sup
˚
˛ > 0 j B2n.˛/ Œ .M; !/

�
called the Gromov radius of .M; !/, [39]. It measures the symplectic size
of .M; !/ in a geometric way, and is reminiscent of the injectivity radius of
a Riemannian manifold. Note that it clearly satisfies the (Monotonicity) and
(Conformality) axioms for a symplectic capacity. It is equally obvious that
cB.B/ D 1.

If M is 2-dimensional and connected, then �cB.M; !/ D R
M !, i.e. cB is

proportional to the volume of M , see [89]. The following theorem from Gro-
mov’s seminal paper [39] implies that in higher dimensions the Gromov radius
is an invariant very different from the volume.

NONSQUEEZING THEOREM (GROMOV, 1985). The cylinder Z 2 Symp2n sat-
isfies cB.Z/ D 1.

Therefore the Gromov radius is a normalized symplectic capacity on Symp2n.
Gromov originally obtained this result by studying properties of moduli spaces
of pseudo-holomorphic curves in symplectic manifolds.

It is important to realize that the existence of at least one capacity c with
c.B/ D c.Z/ also implies the Nonsqueezing Theorem. We will see below
that each of the other important techniques in symplectic geometry (such as
variational methods and the global theory of generating functions) gave rise
to the construction of such a capacity, and hence an independent proof of this
fundamental result.

It was noted in [18] that the following result, originally established by Eliash-
berg and by Gromov using different methods, is also an easy consequence of
the existence of a symplectic capacity.

THEOREM (ELIASHBERG, GROMOV). The group of symplectomorphisms of a
symplectic manifold .M; !/ is closed for the compact-open C 0-topology in the
group of all diffeomorphisms of M .

2.3. Symplectic capacities via Hamiltonian systems. The next four examples
of symplectic capacities are constructed via Hamiltonian systems. A crucial role
in the definition or the construction of these capacities is played by the action
functional of classical mechanics. For simplicity, we assume that .M; !/ D
.�2n; !0/. Given a Hamiltonian function H W S1 � �2n ! � which is periodic
in the time-variable t 2 S1 D �=� and which generates a global flow 't

H
, the
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QUANTITATIVE SYMPLECTIC GEOMETRY 7

action functional on the loop space C 1.S1; �2n/ is defined as

�H .� / D
Z

�

y dx �
Z 1

0

H
�
t; � .t/

�
dt: (2–1)

Its critical points are exactly the 1-periodic orbits of 't
H

. Since the action func-
tional is neither bounded from above nor from below, critical points are saddle
points. In his pioneering work [83; 84], P. Rabinowitz designed special minimax
principles adapted to the hyperbolic structure of the action functional to find such
critical points. We give a heuristic argument why this works. Consider the space
of loops

E D H 1=2.S1; �
2n/ D

(
z 2 L2

�
S1I �

2n
� ˇ̌̌

ˇ̌ X
k2�

jkj jzk j2 < 1
)

where z D P
k2�

e2�ktJ zk , zk 2 �2n, is the Fourier series of z and J is the
standard complex structure of �2n Š �n. The space E is a Hilbert space with
inner product

hz; wi D hz0; w0i C 2�
X
k2�

jkj hzk ; wki;

and there is an orthogonal splitting E D E� ˚ E0 ˚ EC, z D z� C z0 C zC,
into the spaces of z 2 E having nonzero Fourier coefficients zk 2 �2n only for
k < 0, k D 0, k > 0. The action functional �H W C 1.S1; �2n/ ! � extends to
E as

�H .z/ D
�

1
2

��zC
��2 � 1

2
kz�k2

�
�

Z 1

0

H.t; z.t// dt: (2–2)

Notice now the hyperbolic structure of the first term �0.x/, and that the second
term is of lower order. Some of the critical points z.t/ � const of �0 should
thus persist for H ¤ 0.

2.3.1. Ekeland–Hofer capacities. The first construction of symplectic capac-
ities via Hamiltonian systems was carried out by Ekeland and Hofer [18; 19].
To give the heuristics, we consider a bounded domain U � �2n with smooth
boundary @U . A closed characteristic � on @U is an embedded circle in @U

tangent to the characteristic line bundle

�U D f.x; �/ 2 T @U j !0.�; �/ D 0 for all � 2 Tx@U g :

If @U is represented as a regular energy surface
˚
x 2 �2n j H.x/ D const

�
of a

smooth function H on �2n, then the Hamiltonian vector field XH restricted to
@U is a section of �U , and so the traces of the periodic orbits of XH on @U are

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-17541-8 - Dynamics, Ergodic Theory, and Geometry: Dedicated to Anatole Katok
Edited by Boris Hasselblatt
Excerpt
More information

http://www.cambridge.org/9780521175418
http://www.cambridge.org
http://www.cambridge.org


8 K. CIELIEBAK, H. HOFER, J. LATSCHEV, AND F. SCHLENK

the closed characteristics on @U . The action of a closed characteristic � on @U

is defined as �.� / D
ˇ̌̌R

� y dx
ˇ̌̌
. The set

˙ .U / D fk �.� / j k D 1; 2; : : : I � is a closed characteristic on @U g

is called the action spectrum of U . Now one would like to associate with U

suitable elements of ˙ .U /. Without further assumptions on U , however, the set
˙ .U / may be empty (see [32; 33; 35]), and there is no obvious way to achieve
(Monotonicity). To salvage this naive idea, Ekeland and Hofer considered for
each bounded open subset U of �2n the space �.U / of time-independent Hamil-
tonian functions H W �2n ! Œ0; 1/ satisfying

� H � 0 on some open neighbourhood of U , and
� H.z/ D ajzj2 for jzj large, where a > � , a 62 �� .

Notice that the circle S1 acts on the Hilbert space E by time-shift x.t/ ‘
x.t C�/ for � 2 S1 D �=�. The special form of H 2 �.U / guarantees that for
each k 2 � the equivariant minimax value

cH ;k WD inf
n

sup
� 2�

�H .� / j � � E is S1-equivariant and ind.�/ � k
o

is a critical value of the action functional (2–2). Here, ind.�/ denotes a suitable
Fadell–Rabinowitz index [26; 19] of the intersection � \ SC of � with the unit
sphere SC � EC. The k-th Ekeland–Hofer capacity cEH

k
on the symplectic

category Op2n is now defined as

cEH
k .U / WD inf

˚
cH ;k j H 2 �.U /

�
if U � �2n is bounded and as

cEH
k .U / WD sup

˚
cEH

k .V / j V � U bounded
�

in general. It turns out that these numbers are indeed symplectic capacities.
Moreover, they realize the naive idea of picking out suitable elements of ˙.U /

for many U : A bounded open subset U of �2n is said to be of restricted con-
tact type if its boundary @U is smooth and if there exists a vector field v on
�2n which is transverse to @U and whose Lie derivative satisfies Lv!0 D !0.
Examples are bounded star-shaped domains with smooth boundary.

PROPOSITION (EKELAND AND HOFER, 1990). If U is of restricted contact
type, then cEH

k
.U / 2 ˙.U / for each k 2 �.
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QUANTITATIVE SYMPLECTIC GEOMETRY 9

Since the index appearing in the definition of cH ;k is monotone, it is immedi-
ate from the definition that cEH

1
� cEH

2
� cEH

3
� : : : form an increasing sequence.

Their values on the ball and cylinder are

cEH
k .B/ D

�
k C n � 1

n

�
� and cEH

k .Z/ D k�;

where Œx� denotes the largest integer � x. Hence the existence of cEH
1

gives
an independent proof of Gromov’s Nonsqueezing Theorem. Using the capacity
cEH

n , Ekeland and Hofer [19] also proved the following nonsqueezing result.

THEOREM (EKELAND AND HOFER, 1990). The cube

P D B2.1/ � : : : � B2.1/ � �
n

can be symplectically embedded into the ball B2n.r2/ if and only if r2 � n.

Other illustrations of the use of Ekeland–Hofer capacities in studying embed-
ding problems for ellipsoids and polydiscs appear in Section 4.

2.3.2. Hofer–Zehnder capacity. (See [48; 49].) Given a symplectic manifold
.M; !/ we consider the class �.M / of simple Hamiltonian functions H W M !
Œ0; 1/ characterized by the following properties:

� H D 0 near the (possibly empty) boundary of M ;
� The critical values of H are 0 and max H .

Such a function is called admissible if the flow 't
H

of H has no nonconstant
periodic orbits with period T � 1.

The Hofer–Zehnder capacity cHZ on Symp2n is defined as

cHZ.M / WD sup fmax H j H 2 �.M / is admissibleg
It measures the symplectic size of M in a dynamical way. Easily constructed ex-
amples yield the inequality cHZ.B/ � � . In [48; 49], Hofer and Zehnder applied
a minimax technique to the action functional (2–2) to show that cHZ.Z/ � � , so

cHZ.B/ D cHZ.Z/ D �;

providing another independent proof of the Nonsqueezing Theorem. Moreover,
for every symplectic manifold .M; !/ the inequality �cB.M / � cHZ.M / holds.

The importance of understanding the Hofer–Zehnder capacity comes from
the following result proved in [48; 49].

THEOREM (HOFER AND ZEHNDER, 1990). Let H W .M; !/ ! � be a proper
autonomous Hamiltonian. If cHZ.M / < 1, then for almost every c 2 H.M /

the energy level H �1.c/ carries a periodic orbit.
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10 K. CIELIEBAK, H. HOFER, J. LATSCHEV, AND F. SCHLENK

Variants of the Hofer–Zehnder capacity which can be used to detect periodic
orbits in a prescribed homotopy class where considered in [59; 88].

2.3.3. Displacement energy (See [43; 55].) Next, let us measure the sym-
plectic size of a subset by looking at how much energy is needed to displace it
from itself. Fix a symplectic manifold .M; !/. Given a compactly supported
Hamiltonian H W Œ0; 1� � M ! �, set

kHk WD
Z 1

0

	
sup

x2M

H.t; x/ � inf
x2M

H.t; x/



dt:

The energy of a compactly supported Hamiltonian diffeomorphism ' is

E.'/ WD inf
n
kHk j ' D '1

H

o
:

The displacement energy of a subset A of M is now defined as

e.A; M / WD inf fE.'/ j '.A/ \ A D ?g
if A is compact and as

e.A; M / WD sup fe.K; M / j K � A is compactg
for a general subset A of M .

Now consider the special case .M; !/ D .�2n; !0/. Simple explicit examples
show e.Z; �2n/ � � . In [43], H. Hofer designed a minimax principle for the
action functional (2–2) to show that e.B; �2n/ � � , so that

e.B; �
2n/ D e.Z; �

2n/ D �:

It follows that e.�; �2n/ is a symplectic capacity on the symplectic category Op2n

of open subsets of �2n.
One important feature of the displacement energy is the inequality

cHZ.U / � e.U; M / (2–3)

holding for open subsets of many (and possibly all) symplectic manifolds, in-
cluding .�2n; !0/. Indeed, this inequality and the Hofer–Zehnder Theorem
imply existence of periodic orbits on almost every energy surface of any Hamil-
tonian with support in U provided only that U is displaceable in M . The proof
of this inequality uses the spectral capacities introduced in Section 2.3.4 below.

As an application, consider a closed Lagrangian submanifold L of .�2n; !0/.
Viterbo [98] used an elementary geometric construction to show that

e
�
L; �

2n
�

� Cn .vol.L//2=n
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