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Motion and Expansion of a Viscous
Vortex Ring: Elliptical Slowing Down
and Diffusive Expansion

Yasuhide Fukumoto and H.K. Moffatt

1 Introduction

The motion of a vortex ring is a venerable problem, and, since the attempts
of Helmholtz and Kelvin in the last century, extensive study has been made
on various dynamical aspects, such as formation, traveling speed, waves, in-
stability, interactions and so on. Concerning the steady solution for inviscid
dynamics, analytical technique has been matured enough to make a highly
nonlinear regime tractable. In contrast, the effect of viscosity on the nonlinear
dynamics is poorly understood even for an isolated vortex ring.

In this article, we present a large-Reynolds-number asymptotic theory
of the Navier-Stokes equations for the motion of an axisymmetric vortex
ring of small cross-section. Our intention is to make the nonlinear effect
amenable to analysis by constructing a framework for calculating higher-
order asymptotics. The nonlinearity is featured by deformation of the core
cross-section. We build a general formula for the translation speed incor-
porating the slowing-down effect caused by the elliptical deformation of the
core. Moreover we show that viscosity has the action of expanding the ring
radius, simultaneously with swelling the core; starting from an infinitely thin
circular loop of radius Ry, the radii R,(t) of the loop of stagnation points
relative to a comoving frame, R,(t) of the loop of peak vorticity, R(t) of the
centroid of vorticity all grow linearly in time ¢ as Ry ~ Ro +2.5902739vt/ Ry,
R, ~ Ry+4.5902739vt/ Ry, and R, = Ro+3vt/Ry. It is pointed out that the
asymptotic values of R, and R, exhibit a discrepancy, at a finite Reynolds
number, from the numerical result of Wang, Chu & Chang (1994).

To begin with, we briefly survey known results. Dyson (1893) (see also
Fraenkel 1972) extended Kelvin’s formula for the speed U of a thin axisym-
metric vortex ring, steadily translating in an inviscid incompressible fluid
of infinite extent, to third (virtually fourth) order in a small parameter
€ = 0/ Ry, the ratio of core radius o to the ring radius Ry, as

e ) 5L () Y o),
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2 Fukumoto & Moffatt

where I is the circulation carried by the ring. The vorticity is assumed to be
in proportion to distance from the axis of symmetry. We consider Kelvin’s
formula (the first two terms) as the first-order and the O(g?)-terms as the
third. The local self-induced flow consists not only of a uniform flow but also
of a straining field. The latter manifests itself at O(e?) and deforms the core
into an ellipse, elongated in the propagating direction:

3e? 8 17
r=o{1——§—[log<g)—E]cos20+---}, (1.2)

where (r,8) are local moving cylindrical coordinates about the core center
which will be introduced in §2. The inclusion of the third-order term in the
propagating velocity gives a remarkable improvement in approximation; (1.1)
compares well even with the exact value for the ‘fat’ limit of Hill’s spherical
vortex (Fraenkel 1972). In this limit, the parameter ¢ is as large as v/2 under
a suitable normalisation. This surprising agreement encourages us to explore
a higher-order approximation in more general circumstances.

Viscosity acts to diffuse vorticity, and the motion ceases to be steady. Its
influence on the traveling speed, at large Reynolds number, was first addressed
by Tung & Ting (1967), using the matched asymptotic expansions, for the
case where the the vorticity is, at a virtual instant ¢t = 0, a ‘6-function’ con-
centrated on a circle of radius Ry. By a different method, Saffman (1970) suc-
ceeded in deriving an explicit formula, valid up to first order in € = (v/T")'/?,
as

T 4R, 2Wt) 2

where v is the viscosity, ¢ is the time, and v = 0.57721566 - - - is Euler’s con-
stant (see also Callegari & Ting 1978). Wang, Chu & Chang (1994) employed
a similar method to Tung & Ting (1967), but with a different choice v/ as
small parameter, and gained a correction to (1.3) originating from the viscous
diffusive effect. This correction vanishes in the limit of v — 0. Unfortunately,
the existing asymptotic theories all assume a circular symmetric core with a
Gaussian distribution of vorticity. It implies that our knowledge of the non-
linear effect is restricted to O(e). For comprehensive lists of theories of vortex
rings, the article of Shariff & Leonard (1992) should be referred to.

Motivated by intriguing pattern variation of the dissipation field visualised
from numerical data of simulations of fully developed turbulence, Moffatt,
Kida & Ohkitani (1994) developed a large-Reynolds-number asymptotic the-
ory for a steady stretched vortex tube subjected to uniform non-axisymmetric
irrotational strain. They demonstrated that the higher-order asymptotics sat-
isfactorily account for the fine structure of the dissipation field previously ob-
tained by numerical computation (Kida & Ohkitani 1992). The corresponding
planar problem, though unsteady, is dealt with in a similar manner, and an

U r [Iog<8R0)—1(1—’y+log2)+~-- , (1.3)
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extension of the result of Ting & Tung (1965) to a higher order was achieved
by Jiménez, Moffatt & Vasco (1996). The structure of the solutions have
much in common; at leading order, a columnar vortex with circular cores,
an exact solution of the Navier-Stokes equations, is obtained. A quadrupole
component enters at O(v/T'), which is realised as the deformation of the core
cross-section into an ellipse. The distinguishing feature is that the major
axis of the ellipse is aligned at 45° to the principal axis of the external stain.
This result leads us to expectat that the strained cross-section of a vortex
ring, observed in nature, is established as an equilibrium between self-induced
strain and viscous diffusion. Along the line of this scenario, we elucidate the
structure of this strained core and its influence on the traveling speed of an
axisymmetric vortex ring.

A powerful technique for our purpose is the method of matched asymp-
totic expansions. It has been previously developed to derive the velocity of
a slender curved vortex tube (see, for example, Ting & Klein 1991). How-
ever this method is limited to O(e?) (Moore & Saffman 1972; Fukumoto &
Miyazaki 1991). In the viscous case also, the self-induced strain, with the
resulting elliptical deformation of the core, makes its appearance at O(e?),
and its influences on the translation speed come up at O{e®). We are thus
requested to extend asymptotic expansions to a higher order.

In §2, we state the general problem. The existing asymptotic formula for
the potential flow associated with a circular vortex loop is not sufficient to
carry through our program. In order to work out the correct inner limit
of the outer solution, we devise, in §3, a technique to produce a systematic
asymptotic expression of the Biot—Savart integral accommodating an arbi-
trary vorticity distribution. In §4, the inner expansions are scrutinised to
O(e) and are extended to O(c?). Based on these, we demonstrate in §5.1
that the radii of the loops of the stagnation points, maximum vorticity and
vorticity centroid all grow linearly in time owing to the action of viscosity.
Thereafter, we establish in §5.2 a general formula for the translating velocity
of a vortex ring. In §6, an equation governing the temporal evolution of the
axisymmetric vorticity at O(e?) is derived, and an integral representation of
the exact solution is given, by which the formula of the preceding section can
be closed.

A few ambiguous steps lying in previous theories stand as obstacles to
proceeding to higher orders. These highlight the significance of the dipoles
distributed along the core centerline and oriented in the propagating direction.
It turns out that their strength needs to be prescribed at an initial instant,
which solves the problem of undetermined constants at O(¢). As a by-product,
a clear interpretation is provided of the general mechanism of the self-induced
motion of a curved vortex tube. Because of the limitation of space, we must
omit the technical details. A comprehensive account of our theory will be
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available in the paper of Fukumoto & Moffatt (2000).

2 Formulation

Consider an axisymmetric vortex ring of circulation I' moving in an infinite
expanse of viscous fluid with kinematic viscosity v. We suppose that the
circulation Reynolds number Rer is very large:

Rer=T/v> 1. (2.1)

Two length scales are available, namely, measures of the core radius o and the
ring radius Ry. Suppose that their ratio o/ Ry is very small. We focus atten-
tion on the translational motion of a ‘quasi-steady’ core. This means that we
exclude stable or unstable wavy motion and fast core-area waves. Then, ac-
cording to (1.1), the time-scale under question is of order Ry/(T'/Ro) = R§/T.
The core spreads over this time to be of order o ~ (v)¥/2 ~ (v/T)}/2Ry. Our
assumption of slenderness requires that the relevant small parameter (< 1)

e=/u/T. (2.2)

P
Q /O SRR %‘ ®

0 R() TP
Figure 1

Choose cylindrical coordinates (p, ¢, z) with the z-axis along the axis of
symmetry and ¢ along the vortex lines as shown in Figure 1. We consider an
axisymmetric distribution of vorticity w = {(p, z)e, localised about the circle
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(p,z) = (R(t), Z(t)), where ey is the unit vector in the azimuthal direction.
The Stokes streamfunction ' is given by

00 C(p', 2")p cos ¢/ dp’d'dz’
VPO 0y iy p——tid RNCE)
T d4r \/p2—2pp’cos¢’+p’2+(z—z’)2
The theorems of Kelvin and Helmholtz imply that determination of the ring

motion necessitates a knowledge of the flow velocity in the vicinity of the
core.

As is well known, the irrotational flow-velocity calculated from (2.3) for
an infinitely thin core increases without limit primarily in inverse proportion
to the distance from the core. In addition, it entails a logarithmic infinity
originating from the curvature effect. These singularities may be resolved by
matching the outer flow to an inner vortical flow which decays rapidly as the
core center is approached. Thus we are led to inner and outer expansions
(Ting & Tung 1965; Tung & Ting 1967). The inner region consists of the
core itself and the surrounding toroidal region with thickness of the order of
the core radius 0. There we develop an inner asymptotic expansion which
matches at each level to the outer solution (2.3).

To this end, it is advantageous to introduce, in the axial plane, local polar
coordinates (r,8) moving with the core center' (R(t), Z(t)) with 6 = 0 in the
p-direction (Figure 1):

p=R(t)+rcosf, z2=Z(t)+rsinf. (2.4)

Let us make the inner variables dimensionless. The radial coordinate is nor-
malised by the core radius eRo(= o) and the local velocity v = (u, v), relative
to the moving frame, by the maximum velocity I'/(eRo). In view of (1.1), the
normalisation parameter for the ring speed (R(t), Z(t)), the slow dynamics,
should be I'/ Ry. The suitable dimensionless inner variables are thus defined
as

r=r/eRy, =t/ yr=rb = C/—n,
vl (B2 = (R 2

The difference in normalisation between the last two of (2.5) should be kept
in mind.

(2.5)

The equations handled in the inner region are the coupled system of the
vorticity equation and the subsidiary relation between ¢ and %. Dropping
the asterisks, they take the following form:

oC ¢ v 1 (9 oy
6t+ <8r+r86> ep2 (81‘ 9+_5§COS{9)C

!The definition of the ‘core center’ will be discussed at some length in §4.2
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) € 8 sinf 0 €2
-—V[AC'*'_(COSGE . %)C—E :| y (26)
1 € 0 sinf o
¢ = ;AU) 2(095 Tgé)#% (2.7)

where 7 = 1, p= R+ ercosf, and A is the two-dimensional Laplacian,

2 19 18

A=——=+-——+ =77 2.
8r2+r8r+r2802’ (28)
and u and v are the r- and §-components of the relative velocity v:
190 . .
= E—gg —€(Zsin6 + Rcos?), (2.9a)
10 . .
v o= —;a—qf—e(Zcosﬁ—RsinH). (2.9b)
We now postulate the following series expansions of the solution:
¢ = C(O) + EC(I) + 62<(2) + 634(3) 4 (2.10a)
Y = 1’[,(0) + Ew(l) + 62¢(2) + 631[,(3) 4, (2.10b)
R RO 4+ eRM 4+ R® ... (2.10¢)
Z = 2O 4ezW 422 1. (2.10d)

where (@ and %@ (i = 0,1,2,3,---) are functions of r, # and sometimes
t. There arises log e as well, but we may conveniently take it to be of order
unity, since multiples of loge happen to be ruled out at least to the above
order. Inserting these expansions into (2.6) and (2.7), supplemented by (2.8)-
(2.9b), and collecting terms with like powers of ¢, we obtain the equations to
be solved in the inner region.

The permissible solution must satisfy the condition:
u and v are finite at r = 0. (2.11)

We emphasise that this condition is better than the restrictive one that u =
v = 0 at 7 = 0. The requirement that it smoothly match the asymptotic
form, valid in the vicinity of the core, of the outer solution will determine
the values of R® and Z® (i = 0,1,2,---). This procedure was already
performed by Tung & Ting (1967) and Callegari & Ting (1978) and others,
up to first order. Our aim is to explore the second and third orders. Before
that, we reconsider the earlier results.
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3 Outer solution
For a circular vortex loop of unit strength placed at (p,z) = (R, Z), { =
8(p — R)6(z — Z) and the Stokes streamfunction (2.3) simplifies to
P Rcos¢'d¢’

4 Jo \/p'-’ —2pRcos¢’ + R? + (2 — Z)? .

Ym(p, 2 R) = — (3.1)

Use of the complete elliptic integrals K and E of the first and second kinds
converts (3.1) into Maxwell’s well-known formula. We call ¢y, the ‘monopole
field’. With the aid of the asymptotic behaviour of K and F for modulus
close to unity, the asymptotic form of ¥, for r <« R is obtainable at once
(Dyson 1893; Tung & Ting 1967):

'R 8R T 8R
Ym = ——2—;{log (-—;—) + 3R [log (T) - 1] cosf
r? 8R 8R
toim ( 2log (T) + 1} + [— log <T> + 2} c0s29)
r3 8R 8R 7
+—26R3 ({—3Iog (T) + 1] cosd + [log (T) - g] cos 36)}
T (3.2)

It turns out however that, when going to higher orders, (3.1) is not enough to
qualify as the outer solution. Investigation of the detailed structure of (2.3)
is unavoidable.

For this purpose, it is expedient to adapt Dyson’s ‘shift operator’ technique
to an arbitrary distribution of vorticity, and to cast (2.3) in the following form:

2m Rcos¢'d¢’
o p?—2pRcos¢’ + RZ+ 3%’
(3.3)
where (z,%) = (p — R,z — Z) are local Cartesian coordinates attached to
the moving frame, and ¢ is rewritten in terms of them. Hereafter, we use
z for 2. Supposing rapid decrease of vorticity with distance from the local
origin r = 0, the exponential function of the operators is formally expanded
in Taylor series as

_ o I o /8 /a 1 /a 18 ?

P(p, 2) —//_ooda:dz((:c,z){l-f-(z—aﬁ 28z>+2! (:1: BR—Z$>
(g9 JoN 1,0 oY (.0 8

3\ OR 0z 41\ OR dz 5!'\" OR 0z

b= [ dazi, )
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We shall find in §4 that, up to O(e?), the vorticity distribution has the
following dependence on the local polar coordinate 6:

C(z,2) = G+ eCcos b+ €2(¢5 2 4+ ¢ cos26)
+e (C(S) cos § + 4(3) sin 6 + <31 cos36) + -, (3.5)

where (;; (k) gre functions of 7 and ¢, and k stands for the order of perturbation,
1 labels the Fourier mode with j = 1 and 2 corresponding to cos 6 and sin i
respectively.

With this form, (3.2) and (3.5), along with (2.10c), are substituted into
(3.4) and the resulting expression is made dimensionless by use of the nor-
malization (2.5). Using, in advance, R = 0 and (6.5), we eventually arrive
at the asymptotic development of the Biot-Savart law, valid to O(e®), in a
region r < R surrounding the core:

(0) (0) (0)
¢:—R Flog 8 +¢€ L log 8K -1 rcosH-i—d(l)ﬂ
27 €T 47 €T T

r 8RO 8RO
2 2 _ 2
+e { TR ({2 log ( p ) + 1] T [log < p. ) 2] T4 cos 29)

dV [ (8RO cos20 PR® ~(8RO\  cos20
Toro 8\ ) T T | T T e T

T 8RO 8RO 7
+63{W)—)E <|:310g< r ) - 1] TBCOSH— [log ( p ) — §:| T3C0536>

dV (T (8RO 7] ey Tes30) _ TR®
8RO \[F\ Ter 7 4 4RO’

L (Lo, [% 5.2 O, [ 2,3 Lr [ 3,2 1) cost
—%(5[27{'/0 (g dr]+R [77/0 TClldr]+Z[7r/(J rgzldr]) -

(2) 1 1 oo
41 (cosf + cos 36) — —= (_ [Qﬂ/ r7§(0)dr]
0

4RO 7RO \3 .28
R 6] o BV [ 50@
_8~4![7r/o recivdr] + [ﬂ-/o rGidr]
(R®)3 % 3 cos3§ RO 2@ sin §
G ] ) S = el [ e T
o (36)
where 0o
= 27r/ r¢Odr, (3.7a)
0

(I' = 1 when dimensionless), and d*) and ¢? are the strength of thedipole
at O(e) and quadrupole at O(¢?) :

P _ZL {i[2ﬂ/()°°rsc(0)d,o] +R<°>[7r/0°° r2c§}>dr]}, (3.7b)

s
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1 1 o RO® . oo
2 - __+ J_* 5 ~(0) &S 4~(1)
q = QWR(O){ 9% [27r/0 r°( dr] + 3 [77/0 (e dr]
R(O) 2 0o
+u[7r/ r%,’é?dr]}. (3.7¢)
2 0

The terms multiplied by I" stem from I'¢b,,,, and only these have been pre-
viously employed as the outer solution. We now recognize that, at higher
orders, the monopole field needs to be corrected by the induction velocity as-
sociated with the di-, quadru-, hexa-poles ... distributed along the centerline
r = 0 of the core. In the light of (3.7b) and (3.7¢), the detailed profile of
vorticity in the core is necessary to evaluate these multi-pole induction terms.
Parts of (3.6) supply the matching conditions on the inner solution. The dis-
tributions of (ﬁ), 82), éf), 1(?, 41(3) and Cﬁ) are as yet unknown, but will be
determined successively by the inner expansions and the matching procedure.

4 Inner expansions up to second order

In this section, we recall the inner expansions at leading and first orders, de-
veloped by Tung & Ting (1967), Widnall, Bliss & Zalay (1971) and Callegari
& Ting (1978), and extend them to second order.

4.1 Zeroth order

At O(€"), the Navier-Stokes equations reduce to the Jacobian form of the
steady Euler equations:

19(¢9, @) _

[C(O)a 1/’(0)] = r a(r 9) - 07 (41)

resulting in (O = F(¢(®), for some function F.

Suppose that the flow %9 has a single stagnation point at r = 0, the
streamlines being all closed around that point. Then it is probable that the
solution of (4.1), coupled with the (-9 relation

1

0) _
¢ = R(©)

AP, (4.2)
must be ‘radial’; the streamlines are necessarily all circles (Moffatt et al.
1994). This statement may stand as a corollary of the theorem proved by
Caffarelli & Friedman (1980) and Fraenkel (1999). In any event, we may
certainly assume that 9 = (O (r),
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The functional form of ¥(® and ¢® remains undetermined at this level of
approximation, but is determined through the axisymmetric (or f-averaged)
part of the vorticity equation at O(e?):

d¢ ) o ro¢c@\ RO /52¢@®  19¢O
il -t mall R (i e mal) IR )

(Tung & Ting 1967). It follows that viscosity plays the role of selecting
the distribution. For instance, we restrict our attention to a specific initial
distribution of a ‘6-function’ vorticity concentrated on the circle of radius
RO,

¢ =6(p— RNz - 2Z0) at t=0. (4.4)
When R® is constant, to be shown in the next subsection, we obtain the
Oseen diffusing vortex:

1 245
(0) — —r°/40t . 4.5
¢ amit (45)

In view of (2.9a), (2.9b) and (4.2), the leading-order variables are related
to each other through

1 oy© 1 oy 19
o_ __- ¥ o _-__- ¥¥ 0 __= (0)
= ROy a0 v FORETR = (rv ) . (4.6)

These are integrated to provide u(®) = 0 and, in the case of the Oseen vortex,

1 2 /40 R(O) T 1 12 a0
0) — __— (1 _ p—ri/4nt ) _ 2y v/ ait ’
v = (1 e ) , P = 5 /0 = (1 e )dr .47

This solution automatically fulfills the matching condition, the leading-order
part of (3.6).

4.2 First order

Combining the vorticity equation with (-1 relation at O(e), we see that the
first-order perturbation (! satisfies

(A —a) Y™ = —cos O+ ROra(ZO cos §— R sin §)+2r¢? cos§, (4.8)

where e
1
a(r, t) = —WW . (49)
Here we have anticipated that (él) = 0, which follows from an analysis of the

vorticity equation at O(e?).
The solution satisfying the condition (2.11) at O(e3) is explicitly written
in the following way. The 8-dependence is

p® = D cosf + ¢Y sind. (4.10)
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