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We first survey componentwise and normwise perturbation bounds for the
standard least squares (LS) and minimum norm problems. Then some recent
estimates of the optimal backward error for an alleged solution to an LS
problem are presented. These results are particularly interesting when the
algorithm used is not backward stable.

The QR factorization and the singular value decomposition (SVD), developed
in the 1960s and early 1970s, remain the basic tools for solving both the LS
and the total least squares (TLS) problems. Current algorithms based on
Householder or Gram-Schmidt QR factorizations are reviewed. The use of
the SVD to determine the numerical rank of a matrix, as well as for computing
a sequence of regularized solutions, is then discussed. The solution of the TLS
problem in terms of the SVD of the compound matrix (b A) is described.

Some recent algorithmic developments are motivated by the need for the
efficient implementation of the QR factorization on modern computer archi-
tectures. This includes blocked algorithms as well as newer recursive imple-
mentations. Other developments come from needs in different application
areas. For example, in signal processing rank-revealing orthogonal decom-
positions need to be frequently updated. We review several classes of such
decompositions, which can be more efficiently updated than the SVD.

Two algorithms for the orthogonal bidiagonalization of an arbitrary matrix
were given by Golub and Kahan in 1965, one using Householder transforma-
tions and the other a Lanczos process. If used to transform the matrix (b A)
to upper bidiagonal form, this becomes a powerful tool for solving various
LS and TLS problems. This bidiagonal decomposition gives a core regular
subproblem for the TLS problem. When implemented by the Lanczos pro-
cess 1t forms the kernel in the iterative method LSQR. It is also the basis of
the partial least squares (PLS) method, which has become a standard tool in
statistics.
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2 A. BiOrck

We present some generalized QR factorizations which can be used to solve
different generalized least squares problems. Many applications lead to LS
problems where the solution is subject to constraints. This includes linear
equality and inequality constraints. Quadratic constraints are used to regu-
larize solutions to discrete ill-posed LS problems. We survey these classes of
problems and discuss their solution.

As in all scientific computing, there is a trend that the size and complexity
of the problems being solved is steadily growing. Large problems are often
sparse or structured. Algorithms for the efficient solution of banded and
block-angular LS problems are given, followed by a brief discussion of the
general sparse case. lIterative methods are attractive, in particular when
matrix-vector multiplication is cheap.
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1. Introduction

The method of least squares has been the standard procedure for the ana-
lysis of data from the beginning of 1800s. A famous example of its use is
when Gauss successfully predicted the orbit of the asteroid Ceres in 1801.
Two hundred years later, least squares remains a widely used computational
principle in science and engineering.

In the simplest case the problem is, given A € R™*™ and b € R™, to find
a vector z € R" such that

min ||b — Az||a, (1.1)

where || - |2 denotes the Euclidean norm. A least squares solution z is
characterized by r L R(A), where r = b — Az is the residual and R(A) the
range space of A. The residual r is uniquely determined and the solution z
is unique if and only if rank(A) = n. If rank(A) < n, we seek the unique
least squares solution z L N (A), which is called the pseudo-inverse solution.
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THE CALCULATION OF LINEAR LEAST SQUARES PROBLEMS 3

Under-determined systems arise from problems where there are more vari-
ables than needed to match the observed data. The model problem for this
case is to find y € R™ such that

min ||y|l2, ATy =¢, (1.2)

where ¢ € R™. Here y € R, the minimum norm solution of the consistent
under-determined system ATy = ¢, is characterized by y 1 N'(AT). If the
system ATy = ¢ is not consistent we compute the pseudo-inverse solution.

When uncertainties are present also in the matrix A, the total least
squares (TLS) model is more appropriate. The TLS problem is

min || (E r)|p, (A+E)xr=b+r, (1.3)

where || - || denotes the Frobenius matrix norm.

Models where the parameters x occur nonlinearly are common, but in
this survey we will take the simplistic view that nonlinear problems can be
solved by linearization.

From the time of Gauss until the computer age the basic computational
tool for solving (1.1) was to form the normal equations AT Az = ATb and
solve these by symmetric Gaussian elimination (which Gauss did), or later
by the Cholesky factorization (Benoit 1924). This approach has the draw-
back that forming the matrix AT A will square the condition number of the
original problem. This can lead to difficulties since least squares problems
are frequently ill-conditioned.

In the 1950s algorithms based on Gram-Schmidt orthogonalization were
widely used, although their numerical properties were not well understood
at the time. Bjorck (1967b) analysed the modified Gram—~Schmidt algorithm
and showed its stability for solving linear least squares problems.

A breakthrough came with the seminal paper by Golub (1965), where
it was shown how to compute a QR factorization of A using Householder
transformations. A backward stable algorithm for the linear least squares
problems was given. Another important development, which took place
around the same time, was that of a stable algorithm for computing the sin-
gular value decomposition (SVD); see Golub and Kahan (1965) and Golub
(1968), and the Algol program for computing the SVD in Golub and Reinsch
(1970).

Modern numerical methods for solving least squares problems are sur-
veyed in the two comprehensive monographs by Lawson and Hanson (1995)
and Bjorck (1996). The latter contains a bibliography of 860 references,
indicating the considerable research interest in these problems. Hansen
(1998) gives an excellent survey of numerical methods for the treatment of
numerically rank-deficient linear systems arising, for example, from discrete
ill-posed problems. A comprehensive discussion of theory and methods for
solving TLS problems is found in Van Huffel and Vandewalle (1991).
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4 A. BiOreck

Although methods continue to evolve, variations of the QR factorization
and SVD remain the basic tools for solving least squares problems. Much
of the algorithmic development taking place has been motivated by needs
in different application areas, e.g., statistics, signal processing and control
theory. For example, in signal processing data is often analysed in real time
and estimates need to be updated at each time step. Other applications
lead to generalized least squares problems, where the solution is subject
to linear or quadratic constraints. A common trend, as in all scientific
computing, is that the size and complexity of the problems being solved
are steadily growing. There is also an increased need to take advantage of
any structure that may exist in the model. Geodetic networks lead to huge
sparse structured least squares problems, that have to be treated by sparse
factorization methods. Other large-scale problems are better handled by a
combination of direct and iterative methods.

The following survey of some areas of recent progress represents a highly
subjective selection. Hopefully it will show that many interesting develop-
ments still take place in this field.

2. Perturbation analysis and stability
2.1. Perturbation analysis

Consider the least squares problem (1.1) with rank(A4) = n and solution
and residual vector r = b — Ax. Let the data A, b be perturbed to A + § A,
b+ 6b where rank(A+3dA) = n. The perturbed solution by x +dx and 7467
satisfies the normal equations

(A+0A)T(A+0A)(z +6z) = (A+54)T (b + ob).
Subtracting AT Az = AT'b and solving for 6z gives
bz~ AT(6b — A z) + (ATA)16ATr, AT = (AT A)71AT,

where r = b— Az is the residual and second-order terms have been neglected.
For r = 0 this reduces to the well-known first-order perturbation bound

for a square nonsingular linear system. For the residual we have dr ~
(0b— dAzx) — Adx and hence

31 & Py ary(0b— 6Az) + (ANT6AT 7, Pyary=1— AA".

Here Pyryry is the orthogonal projection onto A'(AT). These equations
yield the componentwise estimates (see Bjorck (1991))

|62] < |AT] (160] + [6A] |2]) + (AT A)TH 1SAT |7, (2.1)
1671 < [Pavcary| (1861 + [0A] 2]) + [(AT) T [SAIT |7, (2.2)
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THE CALCULATION OF LINEAR LEAST SQUARES PROBLEMS 5

where the inequalities are to be interpreted componentwise. Taking norms
in (2.1) and using

1A¥ly = 1/on,  I(ATA) M2 =1/07,

where o, is the smallest singular value of A, we obtain the approximate
upper bound

1 1
10|z = —(10bllz + [[0Al2llzll2) + —z llaAl2lirll2. (2.3)

It can be shown that for an arbitrary matrix A and vector b there are
perturbations dA and 0b such that this upper bound is almost attained.
Note that when the residual r # 0 there is an additional term not present
for consistent linear systems. The presence of this term, which will dominate
if |||z > onllz]2, was first pointed out by Golub and Wilkinson (1966).

Setting b = 0 and assuming x # 0, we get for the normwise relative

perturbation in x
oxlla - |I5A||2< [I7[l2 )
S k(A 1+ , 2.4

e ="l \'* 2ulels 24

where k(A) = 01/0y, is the condition number of A.

For the minimum norm problem (1.2) with AT of full row rank, the solu-
tion can be expressed in terms of the normal equation as y = Az, where
AT Az = ¢. Proceeding as before and neglecting second-order terms in the
perturbation we obtain

8y ~ Prary6A Ay 4+ (ANT (6c — 6ATy),
giving the componentwise approximate bound
16y] S [Pacary | 1BAT ATyl + [(AD)T[([6¢] + 1641 [y]). (2.5)

Taking norms we get
1
oyliz = —(llocll2 + 2l13A|l2llyll2)- (2.6)
n

The statistical model leading to the least squares problem (1.1) is that
the vector b of observations is related to the solution x by a linear relation
Axr = b+ ¢, where ¢ is a random error vector with zero mean and whose
components are uncorrelated and have equal variance. More generally, if the
covariance matrix of ¢ equals a symmetric positive definite matrix W, then
the best linear unbiased estimate of z is the solution to the least squares
problem min, (Az — b)TW YAz — b), or equivalently

min [W 2 (b~ Az)]l2. (2.7)
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6 A. Biorck

If the errors are uncorrelated then W is a diagonal matrix and we set D =
diag(dy,...,dy) = W1/2. Then (2.7) is a weighted least squares problem.
If some components of the error vector have much smaller variance than
the rest, k(DA) > k(A) > 1. The perturbation bound (2.4) then seems to
indicate that the problem is ill-conditioned. This is not necessarily so and
for such problems it is preferable to use the componentwise bounds (2.1)-
(2.2). Special methods for weighted problems are discussed in Bjorck (1996,
Section 4.4).

2.2. Backward error and stability

Consider an algorithm for solving the linear least squares problem (1.1).
The algorithm is said to be numerically stable if, for any data A and b,
there exist small perturbation matrices and vectors d A and b, such that
the computed solution 7 is the exact solution to

min [|(4 + 6A4)z — (b -+ 8b) |z, (2.8)

where ||6A|| < 7, ||6b]| < 7, with 7 being a small multiple of the unit round-
off u. Any computed solution Z is called a stable solution if it satisfies
(2.8). This does not mean that Z is close to the exact solution z. If the
least squares problem is ill-conditioned then a stable solution can be very
different from z. For a stable solution the error ||z — Z|| can be estimated
using the perturbation results given in Section 2.1.

The method by Golub (1965) based on Householder QR factorization is
known to be numerically stable with b = 0 (Higham 2002, Theorem 20.3).
Methods which explicitly form the normal equations are not backward
stable. This is because round-off errors that occur in forming ATA and
ATb are not in general equivalent to small perturbations in A and b. Al-
though the method of normal equations gives results of sufficient accuracy
for many applications, its use can result in errors in the computed solution,
which are of much larger size than for a stable method.

Many fast methods exist for solving structured least squares problems,
e.g., when A is a Toeplitz or Cauchy matrix. These are not in general
backward stable (see Gu (1998b)), which is one reason why the following
results are of interest.

Given an alleged solution Z, a backward error is a perturbation d A, such
that Z is the exact solution to the perturbed problem

min || (b +6b) — (A + §A)z]l2. (2.9)

If we could find the backward error of smallest norm, this could be used
to verify numerically the stability properties of an algorithm. There is not
much loss in assuming that éb = 0 in (2.10). Then the optimal backward
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THE CALCULATION OF LINEAR LEAST SQUARES PROBLEMS 7

error in the Frobenius norm is
nr(Z) = min{||0A||r | Z solves min ||b — (A + §A)z|2}. (2.10)

How to find the optimal backward error for the linear least squares prob-
lem was an open problem for many years, until it was elegantly answered
by Waldén, Karlsson and Sun (1995). They solved the problem by char-
acterizing the set of all backward perturbations and by giving an optimal
bound, which minimizes the Frobenius norm ||§ A|| r; see also Higham (2002,
pp. 392-393). Their main result can be stated as follows.

Theorem 1. Let Z be an alleged solution and ¥ = b— A% # 0. The optimal
backward error in the Frobenius norm is
N AT# 2/ 17|z, if # =0,
ne(3) = {n /171

2.11
min{n, omin([A C])}, otherwise, (2:11)

where
n=IFl/El,  C=1-FF")/|IF3,

and opin([A C]) denotes the smallest (nonzero) singular value of the matrix

[A C] c Rmx(nﬁ—m).

The task of computing 7y (Z) is thus reduced to that of computing oyin(A).
Since this is expensive, approximations that are accurate and less costly have
been derived. Karlsson and Waldén (1997) assume that a QR factorization
of A is available and give lower and upper bounds for ng(Z) that only re-
quire O(mn) operations. Gu (1998a) gives several approximations to nz(Z)
that are optimal up to a factor less than 2. His bounds are formulated in
terms of the singular value decomposition of A but his Corollary 2.2 can
also be stated as follows.

Let r1 = Pr(a)T be the orthogonal projection of 7 onto the range of A. If
I1ll2 < aljr||2 it holds that

~1
\/52 o1 < () < V14 a?ay, (2.12)
where
61 = ||(ATA +nI) V2 AT, /|2 (2.13)

Since a — 0 for small perturbations & is an asymptotic upper bound.
Optimal backward perturbation bounds for under-determined systems are
derived in Sun and Sun (1997). The extension of backward error bounds

to the case of constrained least squares problems is discussed by Cox and
Higham (1999b).
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8 A. BJORCK

3. Orthogonal decompositions
3.1. Algorithms using Householder reflections

The QR factorization of a matrix A € R™*" is
A4=Q (10%) (3.1)

where R € R™*™ is upper triangular and QQ € R™*™ is orthogonal. If A has
linearly independent columns, i.e., rank(A) = n, then R is nonsingular. If
we partition

Q=(Q1 @), Q eR™" QyecR™ M)

we obtain the compact form A = @1 R of the QR factorization. In the full
rank case ;1 and R are uniquely determined, provided R is normalized to
have positive diagonal elements. ); gives an orthogonal basis for R(A).
Q2, which is not uniquely determined, gives an orthogonal basis for A'(AT).

The standard method to compute the QR factorization (3.1) is to pre-
multiply A with a product of Householder reflections QT = P,--- PP,
where

T .
P =1-2v0] /llvjl3, j=1:n,

is constructed to zero out the elements below the main diagonal in the jth
column of A. Since a Householder reflection is symmetric and orthogonal,

Q=PP P (3.2)

There is usually no need to form @ explicitly, since the matrix—vector
products Qy and Q7 2 can be efficiently formed using only the Householder
vectors vy,v2, ..., Up. Since v; only has nonzero elements in positions j : m,
these can be stored in an m x n lower trapezoidal matrix. In the dense case
this is the most compact representation possible of @ and Q7.

Given the QR factorization (3.1), the solution z to the linear least squares
problem (1.1) and the corresponding residual r = b — Az is computed:

(g;) —Q™, z=Rld, r= Q(C?z) — Quds.  (33)

This algorithm is backward stable (with 6b = 0) both for computing the
solution z and the residual r = b — Ax; see Higham (2002, Theorem 20.3).

Note that the residual r solves the problem of computing the orthogonal
projection of b onto N(AT):

min ||b — 7|2 subject to AT =0.
T

In some applications we are more interested in the residual r than in the
solution z. From the stability (see also the error analysis in Bjorck (1967a))

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521174329
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-17432-9 - Acta Numerica 2004: Volume 13
A. Iserles

Excerpt

More information

THE CALCULATION OF LINEAR LEAST SQUARES PROBLEMS 9

it follows that the computed residual 7 using (3.3) satisfies a relation
(A+E)7=0, [El2 < culAl (3.4)

Here and in the following c is a generic constant that grows slowly with n.
This implies

1AT7(l2 < cull2l|Allz. (3:5)

that is, the computed residual is accurately orthogonal to R(A). On the
other hand, if 7 = fl(b— Azx), then the best bound we can guarantee is of the
form ||ATF||y < cullb|la]|All2, even if z is the ezact least squares solution,
When ||7]|2 < [|b]|2 this is a much weaker bound than (3.5).

The solution to the minimum norm problem (1.2) can be computed from
the QR factorization (3.1) using

z=R"Te, y=0Q <(Z)> = Q2. (3.6)

The fact that this algorithm is backward stable is a relatively new result
and the first proof was published in Higham (1995, Theorem 20.3).

An implementation of Householder QR factorization is given in Businger
and Golub (1965) (see Wilkinson and Reinsch (1971, Contribution 1/8)). A
more general implementation, that also solves least squares problems with
linear constraints and performs a stable form of iterative refinement of the
solution, is given in Bjorck and Golub (1967).

3.2. Algorithms using modified Gram—Schmidt

In Gram—Schmidt orthogonalization the kth column of @ in the QR fac-
torization is computed as a linear combination of the first k columns in A.
This is equivalent to computing the compact QR factorization!

rir M2 o Tin
T22 - Ton

A= (a1,a2,-..,0,) = (1,92, -, Gn)
Ton

Gram-Schmidt QR factorization can also be described as employing a
sequence of elementary orthogonal projections to orthogonalize a given se-
quence of vectors For any nonzero vector a € R™ the orthogonal projector
P onto the orthogonal complement of a is given by

P=1In—qq", gq=af|all (3.7)

! Trefethen and Bau, IIT (1997) aptly calls Householder QR orthogonal triangularization
and Gram—Schmidt QR triangular orthogonalization.
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10 A. BJORCK

Two versions of the Gram—Schmidt algorithm exist, usually called the
Classical Gram-Schmidt (CGS) and the Modified Gram-Schmidt (MGS)
algorithms. Although these only differ in the order in which the operations
are performed, MGS has much better numerical stability properties.

Setting a; = a§~1), j=1:n,in MGS at the beginning of step k, k =1 : n,

we have computed

k
(QI7---7qk—laa](g )7"'7a$1,k))7 (38)
where a,(ck), e ,aﬁf’ are orthogonal to qi,...,qx_1. First the vector g is

obtained by normalizing a,(ck). The remaining columns are then made ortho-

gonal® to g, using orthogonal projections

k+1 k k k .
ag.+):(I—qkqg)ag):ag)—qk(q,{ag)), j=k+1:n
Owing to rounding errors the computed 1 = (q1,42, - ., qn) Will not be

orthogonal to working accuracy. For MGS the loss of orthogonality can be
bounded in terms of the condition number of A, namely,

I — Q1 Q]2 < crur(A),

where v is the unit round-off; see Bjorck (1967b), Bjorck and Paige (1992).

Because of the loss of orthogonality care is needed in using the MGS fac-
torization. Using a remarkable connection between MGS and Householder
QR factorization, Bjorck and Paige (1992) were able to analyse MGS and
rigorously prove the stability of several algorithm based on the MGS fac-
torization. If these algorithms are used with MGS there is no need for
reorthogonalization of the q vectors for computing least squares solutions,
orthogonal projections or solving minimum norm problems. Since few text-
books describe these stable algorithms we present them again here.

Linear least squares solution by MGS
Carry out MGS on A € R™*", rank(A) = n, to give @1 = (q1,.-.,¢n) and
R, and put b)) = b. Compute the vector z = (z1,...,2,)T by

fork=1:n

ae = gp o™ b =60 — g
end
r= b(n+1);

solve Rx = z;

2 MGS can also be organized so that all previous projections to ay are applied in the kth
step, but this version is not suitable for column pivoting.
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