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Editor’s Statement

A large body of mathematics consists of facts that can be presented and
described much like any other natural phenomenon. These facts, at times
explicitly brought out as theorems, at other times concealed within a proof,
make up most of the applications of mathematics, and are the most likely to
survive change of style and of interest.

This ENCYCLOPEDIA will attempt to present the factual body of all
mathematics. Clarity of exposition, accessibility to the non-specialist, and a
thorough bibliography are required of each author. Volumes will appear in
no particular order, but will be organized into sections, each one comprising
a recognizable branch of present-day mathematics. Numbers of volumes
and sections will be reconsidered as times and needs change.

It is hoped that this enterprise will make mathematics more widely used
where it is needed, and more accessible in fields in which it can be applied
but where it has not yet penetrated because of insufficient information.

G1AN-CARLO ROTA
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Foreword

Galois theory is often cited as the beginning of modern “abstract” algebra.
The ancient problem of the algebraic solution of polynomial equations
culminated, through the work of Ruffini, Abel, and others, in the ideas of
Galois, who set forth systematically the connection between polynomial
equations and their associated groups. This was the beginning of the
systematic study of group theory, nurtured by Cauchy and Jordan to its
flowering at the end of the last century. It can also be viewed as the
beginning of algebraic number theory (although here other forces were also
clearly at work), developed later in the century by Dedekind, Kronecker,
Kummer, and others. It is primarily this number-theoretic line of develop-
ment that is pursued in this book, where the emphasis is on fields, and only
secondarily on their groups.

In addition to these two specific outgrowths of Galois’s ideas, there
came something much broader, perhaps the essence of Galois theory: the
systematically developed connection between two seemingly unrelated sub-
jects, here the theory of fields and that of groups. More specifically, but in
the same line, is the idea of studying a mathematical object by its group of
automorphisms, an idea emphasized especially in Klein’s Erlanger Program,
which has since been accepted as a powerful tool in a great variety of
mathematical disciplines.

Apart from the historical importance of the Galois theory of fields,
its intrinsic interest and beauty, and its more or less direct applications to

XV

© in this web service Cambridge University Press & Assessment www.cambridge.org



www.cambridge.org/9780521173964
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-17396-4 — Field Extensions and Galois Theory
Julio R. Bastida , Foreword by Roger Lyndon
Frontmatter

More Information

xvi Foreword

number theory, these many generalizations and their important applications
give further compelling reasons for seeking an understanding of the theory
in its classical form, as presented in this volume. The Galois theory of field
extensions combines the esthetic appeal of a theory of nearly perfect beauty
with the technical development and difficulty that reveal the depth of the
theory and that make possible its great usefulness, primarily in algebraic
number theory and related parts of algebraic geometry.

In this book Professor Bastida has set forth this classical theory, of
field extensions and their Galois groups, with meticulous care and clarity.
The treatment is self-contained, at a level accessible to a sufficiently well-
motivated beginning graduate student, starting with the most elementary
facts about fields and polynomials and proceeding painstakingly, never
omitting precise definitions and illustrative examples and problems. The
qualified reader will be able to progress rapidly, while securing a firm grasp
of the fundamental concepts and of the important phenomena that arise in
the theory of fields. Ultimately, the study of this book will provide an
intuitively clear and logically exact familiarity with the basic facts of a
comprehensive area in the theory of fields. The author has judiciously
stopped short (except in exercises) of developing specialized topics im-
portant to the various applications of the theory, but we believe he has
realized his aim of providing the reader with a sound foundation from
which to embark on the study of these more specialized subjects.

This book, then, should serve first as an easily accessible and fully
detailed exposition of the classical Galois theory of field extensions in its
simplest and purest form; and second, as a solid foundation for and
introduction to the study of more advanced topics involving the same
concepts, especially in algebraic number theory and algebraic geometry.

We believe that Professor Bastida has offered the reader, for a
minimum of effort, a direct path into an enchantingly beautiful and excep-
tionally useful subject.

ROGER LYNDON
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Preface

Since its inception at the beginning of the nineteenth century, the theory of
field extensions has been a very active area of algebra. Its vitality stems not
only from the interesting problems generated by the theory itself, but also
from its connections with number theory and algebraic geometry. In writing
this book, our principal objective has been to make the general theory of
field extensions accessible to any reader with a modest background in
groups, rings, and vector spaces.

The book is divided into four chapters. In order to give a precise idea
of the background that the reader is expected to possess, we have preceded
the text by a section on prerequisites. Except for the initial remarks, in
which we indicate the restrictions that will be imposed on the rings
considered throughout our presentation, the reader should not be concerned
with the contents of this section until explicit reference is made to them. The
first chapter is devoted to the general facts on fields and polynomials
required in the study of field extensions. Although most of these facts can
be found in one or another of the references given in the section on
prerequisites, we have attempted to facilitate the reader’s task by having
them collected and stated in a manner suitably adapted to our purposes.

The theory of field extensions is presented in the subsequent three
chapters, which deal, respectively, with algebraic extensions, Galois theory,

Xvil
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Xviil Preface

and transcendental extensions. The chapter on algebraic extensions is of
basic importance for the entire theory, and has to be thoroughly understood
before proceeding further. The last two chapters, on the other hand, can be
read independently of each other.

Chapters are divided into sections, and each section ends with a set
of problems. The problems include routine exercises, suggest alternative
proofs of various results, or develop topics not discussed in the text. We
have refrained from identifying the more difficult, and as a rule, no hints are
given for the solutions. A result stated in a problem is not used in the text,
but it may be required for the solution of a later problem.

The choice of material was dictated by the dual objective of provid-
ing thorough coverage of each topic treated and of keeping the length of the
book within reasonable bounds. We decided to include in the text the results
that constitute the core of the general theory of field extensions. Those parts
of the theory sufficiently developed to merit a book of their own have been
left out entirely, and several specialized topics of considerable interest have
been relegated to the problems. We have not attempted to discuss any
serious applications of our subject to number theory or algebraic geometry,
since doing this would have required the introduction of additional back-
ground material. However, as the reader cannot fail to notice, connections
with number theory manifest themselves occasionally in the presentation.

We have included bibliographical notes at the end of each chapter.
These will provide the reader with references to the works in which
important contributions were first published, with easily available references
on topics presented as problems and on alternative treatments of topics
covered in the text, and with suggestions for further reading.

The reference list at the end of the book comprises mainly the works
cited in the text and notes. The vast literature on field extensions and Galois
theory and on their applications to number theory and algebraic geometry
cannot be surveyed, even superficially, within the confines of a few pages.
To get a good idea of the present state of the literature, the reader may
consult the pertinent sections of Mathematical Reviews, the review journal
of the American Mathematical Society.

It is with the deepest gratitude and respect that we acknowledge the
help given to us by Professor Harley Flanders, without which this book
could not have been written. He read the manuscript and made very
substantive suggestions on both content and style; offered us unrestricted
access to his notes on field extensions; discussed proofs, examples, and
problems with us; and never betrayed the slightest impatience in dealing
with us during the four-year period that we worked on this book.

We would also like to express our sincere appreciation to Professor
Gian-Carlo Rota, for his kind invitation to write a volume for the Encyclo-
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Preface xix

pedia; to Professors Paul M. Cohn and Roger C. Lyndon, for their valuable
suggestions; to Professors Tomas P. Schonbek and Scott H. Demsky, for
their help with the bibliographical material; to my students Lynn Garrett
and Jaleh Owliaei, for their comments; to Ruth Ebel and especially Rita
Pelava, for their efficient typing; and to my colleagues at Florida Atlantic
University, for their constant encouragement.

JuLio R. BASTIDA
Boca Raton, Florida
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Historical Introduction

Problems of geometric construction appeared early in the history of
mathematics. They were first considered by the Greek mathematicians of
the fifth century B.C. Only two instruments—an unmarked ruler and a
compass—were permitted in these constructions. Although many such
constructions could be performed, others eluded the efforts of these
mathematicians. Four famous problems from the period that remained
unsolved for a long time are the following: doubling the cube, which
consists of constructing a cube whose volume is twice that of a given cube;
trisecting the angle; squaring the circle, which consists of constructing a
square whose area is that of a given circle; and constructing regular
polygons.

At the end of the eighteenth century, when it was observed that
questions on geometric constructions can be translated into questions on
fields, a breakthrough finally occurred. The 19-year-old Gauss [2: art. 365]
proved in 1796 that the regular 17-sided polygon is constructible. A few
years later, Gauss [2: art. 365, 366] stated necessary and sufficient cond:-
tions for the constructibility of the regular n-sided polygon. He gave a proof
only of the sufficiency, and claimed to have a proof of the necessity; the
latter was first given by Wantzel [1] in 1837. In his investigations, Gauss
introduced and used a number of concepts that became of central impor-
tance in subsequent developments. A by-product of the works of Gauss and
Wantzel on regular polygons was a proof that an arbitrary angle cannot be

Xxi
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xxii Historical Introduction

trisected. The proof of the impossibility of doubling the cube is more
elementary, but its discovery is difficult to trace. As to the remaining
problem, it was realized that the proof of the impossibility of squaring the
circle depended on knowing that the number « is transcendental; this
missing ingredient was supplied in 1882 by Lindemann [1], who used
analytic techniques to settle one of the more fascinating questions in this
area of mathematics.

The general theory of fields evolved during the last half of the
nineteenth century, when the algebraists made significant advances in the
study of algebraic numbers and algebraic functions. The first systematic
exposition of the theory of algebraic numbers was given in 1871 by
Dedekind [4]; in this work, Dedekind introduced the basic notions on fields,
but restricted the field elements to complex numbers. As regards transcen-
dental numbers, the early contributions were made by analysts. The most
notable of these contributions were that by Liouville [1] in 1851, devoted to
the construction of classes of transcendental numbers, and those by Hermite
[2] in 1873 and Lindemann [1] in 1882, in which proofs are given of the
transcendence of the numbers e and «, respectively. But it was not until
1882 that transcendentals made their appearance in the theory of fieids,
when Kronecker [2] succeeded in using the adjunction of indeterminates as
the basis for a formulation of the theory of algebraic numbers. It was also in
1882 that fields of algebraic functions of complex variables were introduced
by Dedekind and Weber {1] in order to lay the foundations of the arithmeti-
cal theory of algebraic functions. This work, in which a purely algebraic
treatment of Riemann surfaces is given, marks the beginning of what was to
become a very fruitful interplay between commutative algebra and algebraic
geometry. It was next discovered in 1887 by Kronecker [3] that every
algebraic number field can be obtained as the quotient of the polynomial
domain Q[ X] by the principal ideal generated by an irreducible polynomial,
showing in effect that the theory of algebraic numbers does not require the
use of complex numbers. Finally, the abstract definition of a field as we
know it today was given in 1893 by Weber [1] in an article on the
foundations of Galois theory. Weber also observed in this work that
Kronecker’s construction can be applied to arbitrary fields, and in particular
to every field of integers modulo a prime; and that as a result, we recover
the theory of higher congruences previously developed by Galois [2], Serret
[1: 343-370], and Dedekind [2].

The final step toward the axiomatic foundations of the theory of
fields was taken by Steinitz [1] in 1910. Spurred on by both the earlier
contributions and the discovery by Hensel [1] of the p-adic fields, Steinitz
set out to derive the consequences of Weber’s axioms. His work, in which
field extensions were first studied in full generality and in which normality,
separability, and pure inseparability were introduced in order to give a
detailed analysis of the structure of algebraic extensions, became the corner-
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Historical Introduction XXiii

stone in the development of abstract algebra. In the words of Artin and
Schreier [1]: “E. Steinitz hat durch seine ‘Algebraische Theorie der Korper’
weite Gebiete der Algebra einer abstrakten Behandlungsweise erschlossen;
seiner bahnbrechenden Untersuchung ist zum grossen Teil die starke Ent-
wicklung zu danken, die seither die moderne Algebra genommen hat”. It is
in the closing pages of Steinitz’s article that the theory of transcendental
extensions was first presented. However, before this theory could be brought
to its present state, two significant additions were yet to be made, both
partially motivated by questions in algebraic geometry. In 1939, MacLane
[1] introduced the notion of separability for transcendental extensions. This
was then followed in 1946 by the treatise on the foundations of algebraic
geometry by Weil [1], in which the abstract notion of derivation is intro-
duced in the study of separability.

Galois theory is generally regarded as one of the central and most
beautiful parts of algebra. Its creation marked the culmination of investiga-
tions by generations of mathematicians into one of the oldest problems in
algebra, the solvability of polynomial equations by radicals. The familiar
formula for the roots of the quadratic equation was essentially known to the
Babylonian mathematicians of the twentieth century B.Cc. No significant
progress was made on polynomial equations of higher degree until the
sixteenth century, when del Ferro and Ferrari discovered the formulas for
the cubic and quartic equations, respectively. These results were first pub-
lished by Cardano [1] in 1545; it is probably for this reason that Cardano’s
name has been traditionally associated with the formulas for the cubic
equation.

These formulas express the roots of the equations in terms of the
coefficients, using exclusively the field operations and the extraction of
roots. Attempts to find such formulas for polynomial equations of higher
degree were unsuccessful; and partly as a consequence of the work of
Lagrange [2;3] in 1770-1772, the algebraists of the period came to believe
that it was impossible to derive them. This was proved to be the case at the
beginning of the nineteenth century. Several proofs were published by
Ruffini 1] between 1799 and 1813, but they were incomplete. The first
satisfactory proof was given by Abel [2] in 1826, three years before his tragic
death before the age of 27; between 1826 and 1829 he obtained further
results on the solvability of polynomial equations by radicals, which were
published in Abel [3; 1: II, 217-243, 269-270, 271-279].

The contributions of Ruffini and Abel were followed by the decisive
results of Galois [1: 25-61] in 1832. Galois proved that the solvability of a
polynomial equation by radicals is equivalent to a special property of a
group naturally associated with the equation. Galois made this discovery
before the age of 20, at a time when abstract algebra virtually did not exist!

Although Galois’s result on the solvability of polynomial equations
by radicals settled a problem that had eluded the efforts of some of the
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greatest mathematicians of earlier generations, later developments have
shown that the ideas introduced by Galois in his solution surpass by far the
importance of the problem that he originally set out to solve. First, Galois
defined and used the group-theoretical properties of normality, simplicity,
and solvability, which play a significant role in the theory of groups.
Moreover, he solved a problem of fields by translating it into a more
tractable problem on groups; in so doing, he probably made the earliest
application of a method that has become pervasive in algebra, namely, that
of studying a mathematical object by suitably relating it to a mathematical
object with a simpler structure. Nor is it an exaggeration to say that Galois
theory is a prerequisite for much current research in number theory and
algebraic geometry.

The story of Galois’s life is a topic of considerable controversy. A
gifted mathematician who is killed in a duel at the age of 20 presents
unlimited opportunities for the creation of a myth. Unfortunately, this is
precisely what several well-known authors have done in their writings on
Galois. By means of intentional or unintentional omissions and distortions,
legends have been created in which Galois is portrayed as a struggling
genius unappreciated not only by the general public, but also by some of the
leading mathematicians of his time. The recent article by Rothman [1] offers
a lively account of such theories, as well as a careful attempt to unravel
them.

Galois’s ideas were expressed originally within the context of the
theory of equations: To each polynomial equation is assigned a group of
permutations of its roots. The progress made toward the axiomatic founda-
tions of algebra in the last part of the nineteenth century had a considerable
impact on Galois theory. Dedekind [4] observed that a more natural setting
for Galois theory is obtained by regarding the groups associated with
polynomial equations as groups of automorphisms of the corresponding
splitting fields. Furthermore, he pioneered the systematic use of linear
algebra in Galois theory. Since the abstract theory of field extensions was
not developed until the first decade of the present century, Dedekind had to
restrict his considerations to special types of fields. That his formulation of
Galois theory remains meaningful for arbitrary fields was shown subse-
quently by the works of Weber [1] in 1893, of Steinitz [1] in 1910, and of
Artin [3] in 1942, It is to these algebraists, and especially to Artin, that we
owe what is now considered to be the definitive exposition of the Galois
theory of finite groups of field automorphisms. A further contribution that
must be mentioned is the generalization of the principal results of this
theory to a special type of infinite groups of field automorphisms, dis-
covered by Krull [1] in 1928.
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We shall assume that the reader possesses a certain familiarity with the
rudiments of abstract algebra. More specifically, in addition to the basic
properties of integers, sets, and mappings, the reader is expected to know
the elementary parts of the theory of groups and the theory of rings, and to
possess a reasonable background in linear algebra. Suggested references on
these prerequisites are the following.

1. Adamson, 1. T. Elementary Rings and Modules. New York: Harper &
Row, 1972.

2. Godement, R. Cours d’Algébre. Paris: Hermann, 1963. (English transla-
tion: Algebra. New York: Houghton Mifflin, 1968.)

3. Halmos, P. R. Naive Set Theory. New York: Springer-Verlag, 1974.

4., Hoffman, K., and Kunze, R. Linear Algebra. Englewood Cliffs, NJ:
Prentice-Hall, 1971.

5. Ledermann, W. Introduction to Group Theory. Edinburgh: Oliver &
Boyd, 1973.

6. Rotman, J. J. The Theory of Groups, an Introduction. Boston: Allyn &
Bacon, 1973.

This list is not intended as an exhaustive bibliography on the basic
concepts of algebra. We have simply selected six easily accessible books
that, for our purposes, are particularly suitable as references. The books [1]
and [2] seem the most convenient: In the first place, we shall adhere almost
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completely to the terminology and notation used in these books; further-
more, taken together, these cover all the required background on rings,
ideals, polynomials, modules, and vector spaces. The few facts on ordering
and cardinal numbers occasionally used here are contained in the book [3];
and each of the books [5] and [6] contains all the background on groups
needed in our presentation of Galois theory. Finally, the book [4] can be
used as an alternative reference on linear algebra.

It should be noted that many books on abstract algebra, in chapters
dealing separately with sets, groups, rings, and linear algebra, contain all or
more of the prerequisites just described. Some of these are listed in the
bibliography at the end of this book. (There is one section of the present
book that requires additional prerequisites. This is section 3.12, which is
devoted to infinite Galois theory, and in which some facts on topological
groups are used. This section, however, is intended for readers interested in
modern number theory; such readers would have to be well-versed in the
theory of topological groups, and so it would be superfluous to give
references on this subject.)

We now proceed to state in precise terms the conventions that will be
adopted, and to explain the terminology and notation that will be used.
Since there is no total agreement on these matters in the literature, the
reader should make sure that we are using the same language.

Three types of algebraic structure are considered in our presentation.
The first is defined by one operation, the second by two operations, and the
third by one operation and one action. The term operation is being used here
with the same meaning as “law of composition”, “internal law of composi-
tion”, and “binary operation”, all of which are standard in the literature;
and the term action is being used with the same meaning as “external law of
composition”, which is also of common usage.

We shall be concerned exclusively with operations that are associa-
tive and admit a neutral element. Moreover, for the most part, we shall use
the multiplicative and additive notations. In the former case, the neutral
element is called the unit element and is denoted by 1; and in the latter, it is
called the zero element and is denoted by 0.

In the case of groups, subgroups, and group-homomorphisms, we
shall usually follow [5] and [6]. In particular, the operation of a group will
be written multiplicatively; the only exception to this occurs when reference
is being made to the additive group of a ring, where the context always
makes the intended meaning clear.

On the other hand, it will not be necessary for us to use the concept
of ring in its full generality. First, our rings, subrings, and ring-homomor-
phisms will be restricted as in [2]: Rings possess a unit element; ring and
subring have the same unit element; and ring-homomorphisms send unit
element to unit element. Also, the nature of our subject dictates that we
restrict our consideration to commutative rings in which the zero and unit
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elements are distinct. Whenever we speak of rings, subrings, and ring-homo-
morphisms, it will be tacitly understood that all these restrictions apply.

Finally, in the case of modules and vector spaces, we shall follow [1],
[2], and [4]. As usual, the operation and action of a module are referred to as
its vector addition and scalar multiplication, respectively. In view of the
conventions just adopted, it will not be necessary to distinguish between left
and right modules. We shall speak of A4-modules, A-submodules, and
A-linear mappings whenever we wish to indicate that the ring of scalars is 4.
The general concept of module will play only an ancillary role in this book,
since we shall be concerned primarily with vector spaces; if the field of
scalars is A, we shall speak of 4-spaces instead of vector spaces over 4. It is
hoped that this departure from standard terminology will not cause misun-
derstandings.

So far, for each of the prerequisites, we have made reference to
certain books whose terminology and notation we shall generally follow. We
shall now indicate the few instances where deviations occur.

A relation is said to order a set when it is reflexive, antisymmetric,
and transitive on the elements of the set. By an ordered set we shall
understand a set provided with a relation that orders it.

Let E be an ordered set. If x, y€E E, we write x <y or y>x to
express that the pair (x, y) is in the given relation ordering E; and we write
x < yory>x toexpress that (x, y) is in this relation and x # y. If (x,), .,
is a family of elements of E, to say that (x;), o, is filtered means that for all
i, j €1, there exists a k € I for which x; > x; and x, > x;; and to say that
(x;); e 1s a chain means that for all i, j € I, we have x; < x; or x; > x,. If
S C E, then S is said to be filtered when the family (x), . ¢ 1s filtered; and
similarly, S is said to be a chain when (x),. is a chain. If SC E and
b € E, then b is an upper bound for S when b > x for every x € S.

If E is an ordered set, there can be in E at most one upper bound for
E; when it exists, it is said to be the largest element of £. A maximal
element of £ is an x € E such that x < y for no y € E. Note that if the
largest element of E exists, it is the only maximal element of E; but when E
does not admit a largest element, it may admit more than one maximal
element.

The preceding considerations on ordered sets apply, in particular, to
sets of sets. Whenever we speak of a set of sets as being ordered by the
inclusion relation, it will be understood that the relation in question is <. It
is clear, therefore, what is meant when we speak of a filtered family of sets, a
filtered set of sets, a chain of sets, the largest element of a set of sets, and a
maximal element of a set of sets.

It should be noted, on the other hand, that every set of sets is also
ordered by the opposite inclusion relation 2. This, however, will be applied
in only two instances: when we speak of the smallest element of a set of sets
and of a minimal element of a set of sets.
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To conclude these remarks on ordered sets, we shall state the result
called Zorn’s lemma. By an inductive set we shall understand an ordered set
in which every nonempty chain admits an upper bound. The result in
question asserts the following:

Every nonempty inductive set admits a maximal element.

This is a powerful set-theoretical tool that we shall use to derive
important properties of algebraically closed fields and to establish the
extendibility of certain mappings. It is not an “intuitive” statement, and
does not yield “constructive” proofs. It is known to be equivalent to the
“more intuitive” axiom of choice in the theory of sets, which asserts that the
cartesian product of every nonempty family of nonempty sets is nonempty.
The reader interested in a detailed study of these questions may wish to
consult the book [3]. We shall simply accept Zorn’s lemma as a valid result,
and apply it without further comment.

A group consisting of a single element will be called trivial. If G is a
group and H is a subgroup of G, a left transversal of H in G is a subset of G
having exactly one element in common with each left coset of H in G; a
right transversal of H in G is defined similarly, using right cosets.

Let A be a ring. There exists a unique homomorphism from the ring
Z of integers to A; this is the mapping n — nl from Z to A. It is customary
to denote by the same symbol n the value of this homomorphism at an
integer n; this is only a notational convenience, and it should be noted that
if m and n are distinct integers, the equality m = n may be valid in A. The
image of this homomorphism is called the image of Z in A4; it is the smallest
element of the set of all subrings of 4.

If A is a ring, the invertible elements of 4 are the multiplicatively
invertible elements of 4. The set of all invertible elements of 4 is multiplica-
tively stable, and, provided with the operation defined by restriction of the
multiplication of 4, is a group. This group is denoted by A*; its neutral
element is 1, the unit element of 4. The subgroups of A* are called the
multiplicative groups in A. The elements of finite order in 4* are the roots of
unity in 4; and if » is a positive integer, an nth root of unity in 4 is an a € 4
for which «” =1, that is, a root of unity in A with order dividing n.

An ideal in a ring is null when it consists of a single element; prime
when it is a proper ideal and its complement in the ring is multiplicatively
stable; and maximal when it is a maximal element of the set of all proper
ideals.

We shall speak of domains instead of integral domains, and of
factorial domains instead of unique factorization domains. By a system of
representatives of irreducible elements in a factorial domain we shall under-
stand a set of irreducible elements having exactly one element in common
with the set of all associates of each irreducible element.
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Polynomials play an essential role in our subject. The letters X, Y, Z
—with or without subscripts—will be reserved for the variables in our rings
of polynomials. Polynomials in infinitely many variables will be required
only occasionally in this book (and in the only important instance, alterna-
tives are indicated); the reader who is not familiar with this more general
type of polynomial should read 0.0.5 below, where it is explained how to
construct rings of polynomials in infinitely many variables.

An injective group-homomorphism or ring-homomorphism will be
called a monomorphism or an embedding. Given two groups or two rings A4
and B, to say that 4 is embeddable in B will mean that there exists a
monomorphism from 4 to B. This terminology is particularly convenient
when dealing with fields, since it serves as a constant reminder of the fact
that every homomorphism from a field to a ring is injective.

A module or vector space consisting of a single element will be called
null. If 4 is a field and E is an A-space, the symbol [ E: A] will denote the
dimension of E over A. Incidentally, the reader in need of a rapid review of
the theory of dimension for general vector spaces may wish to learn
Steinitz’s axiomatic approach; this is given in section 4.1 and requires
set-theoretical prerequisites exclusively, so that it can be read without
reference to any other section.

If A is a ring and [ is a set, the symbol A" will be used to denote the
free A-module based on 1. In order to define this module, we recall that if
(P,); = is a family of statements, we say that P, holds for almost every i € /
when the set of all i € I for which P, does not hold is finite. This being so,
the elements of A" are the families (A,),o,; of elements of A4 such that

; = 0 for almost every i € /; and the vector addition and scalar multiplica-
tion of A" are defined “coordinate-wise”:
(A)iert(1)ier= (}\i+nu'i)iEI and  a(X,),c;=(aA,), ¢}
For each i € I, let ¢, denote the element of A" with 1 as its ith coordinate
and with 0 as its jth coordinate for every j € I —{i}. Then (¢;), ., is a base
of AV, and so A" is indeed a free A-module; we refer to (¢,),, as the
standard base of 47

If A is a ring and » is a positive integer, then the free A-module
based on {1,2,...,n} is none other than the familiar 4-module A of
“vectors” with » coordinates in A4.

If a ring A is a subring of a ring B, then B can be regarded as an
A-module in a natural way: The vector addition is the addition of B, and
the scalar multiplication is the action of 4 on B defined by restriction of the
multiplication of B. Whenever a ring is viewed as a module over a subring,
it will be understood that the linear structure under consideration is defined
in this manner.

If a ring A is a common subring of rings B and C, it is customary to
define an 4A-homomorphism from B to C as a homomorphism from B to C
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