Biodiversity in Agriculture

Domestication, Evolution, and Sustainability

The introduction of plant and animal agriculture represents one of the most important milestones in human evolution. It contributed to the development of cities, alphabets, new technologies, and – ultimately – to civilizations, but it has also presented a threat to both human health and the environment.

Bringing together research from a range of fields including anthropology, archaeology, ecology, economics, entomology, ethnobiology, genetics, and geography, this book addresses key questions relating to agriculture. Why did agriculture develop, and where did it originate? What are the patterns of domestication for plants and animals? How did agroecosystems originate and spread from their locations of origin? Exploring the cultural aspects of the development of agricultural ecosystems, the book also highlights how these topics can be applied to our understanding of contemporary agriculture, its long-term sustainability, the co-existence of agriculture and the environment, and the development of new crops and varieties.

Paul Gepts is Professor of Plant Sciences at the University of California, Davis.

Thomas R. Famula is Professor of Animal Science at the University of California, Davis.

Robert L. Bettinger is a Professor in the Department of Anthropology, University of California, Davis.

Stephen B. Brush is Professor Emeritus in the Department of Human and Community Development, University of California, Davis.

Ardeshir B. Damania is an Associate in the Agricultural Experiment Station, Department of Plant Sciences, University of California, Davis.

Patrick E. McGuire is Academic Coordinator in the Department of Plant Sciences, University of California, Davis.

Calvin O. Qualset is Professor Emeritus in the Department of Plant Sciences, University of California, Davis.

Biodiversity in Agriculture

Domestication, Evolution, and Sustainability

Edited by

PAUL GEPTS, THOMAS R. FAMULA, ROBERT L. BETTINGER,

STEPHEN B. BRUSH, ARDESHIR B. DAMANIA,

PATRICK E. MCGUIRE, and CALVIN O. QUALSET

University of California, Davis, USA

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521170871

© Cambridge University Press & Assessment 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2012

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Harlan Symposium (2nd : 2008 : University of California, Davis) Biodiversity in agriculture : domestication, evolution, and sustainability / edited by Paul Gepts ... [et al.].

p. cm.

"The presentations of the second edition of the Harlan Symposium, held September 14–18, 2008, on the campus of the University of California, Davis ..."–Foreword. Includes index.

ISBN 978-0-521-76459-9 (Hardback) – ISBN 978-0-521-17087-1 (Paperback) 1. Agrobiodiversity–Congresses. I. Gepts, Paul L. II. Title. S494.5.A43H37 2008 631.5'8–dc23

2011026300

ISBN 978-0-521-76459-9 Hardback ISBN 978-0-521-17087-1 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Cambridge University Press & Assessment 978-0-521-17087-1 – Biodiversity in Agriculture: Domestication, Evolution, and Sustainability Edited by Paul Gepts, Thomas R. Famula, Robert L. Bettinger, Stephen B. Brush, Ardeshir B. Damania, Patrick E. McGuire, Calvin O. Qualset Frontmatter More Information

Contents

	List of tables List of figures Foreword B.D. Smith List of contributors Acknowledgments P. Gepts and T. Famula	X	viii x xv vii aiii
	Introduction: The Domestication of Plants and Animals: Ten Unanswer P. Gepts, R. Bettinger, S. Brush, A. Damania, T. Famula, P. McGuire, and C. Qualset	ed Questions	1
1	The Local Origins of Domestication J. Diamond		9
Section I	Early Steps in Agricultural Domestication R. Bettinger		
2	Evolution of Agroecosystems: Biodiversity, Origins, and Differential De D.R. Harris	velopment	21
3	From Foraging to Farming in Western and Eastern Asia O. Bar-Yosef		57
4	Pre-Domestic Cultivation during the Late Pleistocene and Early Holoce in the Northern Levant G. Willcox		92
5	New Archaeobotanical Information on Plant Domestication from Macro Tracking the Evolution of Domestication Syndrome Traits D.Q. Fuller		10
6	New Archaeobotanical Information on Early Cultivation and Plant Dom Involving Microplant (Phytolith and Starch Grain) Remains D.R. Piperno		36

vi	Contents	
7	How and Why Did Agriculture Spread? P. Bellwood	160
8	California Indian Proto-Agriculture: Its Characterization and Legacy M.K. Anderson and E. Wohlgemuth	190
Section II	Domestication of Animals and Impacts on Humans T. Famula	
9	Pathways to Animal Domestication M.A. Zeder	227
10	Genetics of Animal Domestication L. Andersson	260
11	Genome-Wide Approaches for the Study of Dog Domestication B.M. vonHoldt, M.M. Gray, and R.K. Wayne	275
12	Malaria and Rickets Represent Selective Forces for the Convergent Evolution of Adult Lactase Persistence L. Cordain, M.S. Hickey, and K. Kim	299
Section II	P. Gepts	
13	The Dynamics of Rice Domestication: A Balance between Gene Flow and Genetic Isolation S.R. McCouch, M.J. Kovach, M. Sweeney, H. Jiang, and M. Semon	311
14	Domestication of Lima Beans: A New Look at an Old Problem M.I. Chacón S., J.R. Motta-Aldana, M.L. Serrano S., and D.G. Debouck	330
15	Genetic Characterization of Cassava (<i>Manihot esculenta</i> Crantz) and Yam (<i>Dioscorea trifida</i> L.) Landraces in Swidden Agriculture Systems in Brazil E.A. Veasey, E.A. Bressan, M.V.B.M. Siqueira, A. Borges, J.R. Queiroz-Silva, K.J.C. Pereira, G.H. Recchia, and L.C. Ming	344
16	Pigeonpea: From an Orphan to a Leader in Food Legumes C.L. Laxmipathi Gowda, K.B. Saxena, R.K. Srivastava, H.D. Upadhyaya, and S.N. Silim	361
Section IV	S. Brush	
17	Ecological Approaches to Crop Domestication D.B. McKey, M. Elias, B. Pujol, and A. Duputié	377

© in this web service Cambridge University Press & Assessment

	Contents	vii
18	Agrobiodiversity Shifts on Three Continents Since Vavilov and Harlan: Assessing Causes, Processes, and Implications for Food Security G.P. Nabhan, K. Wilson, O. Aknazarov, KA. Kassam, L. Monti, D. Cavagnaro, S. Kelly, T. Johnson, and F. Sekacucu	407
19	Indigenous Peoples Conserving, Managing, and Creating Biodiversity J. Salick	426
20	Land Architecture in the Maya Lowlands: Implications for Sustainability B.L. Turner II and D. Lawrence	445
21	Agrobiodiversity and Water Resources in Agricultural Landscape Evolution (Andean Valley Irrigation, Bolivia, 1986 to 2008) K.S. Zimmerer	464
Section V	Uses of Biodiversity and New and Future Domestications P. McGuire and C. Qualset	
22	Participatory Domestication of Indigenous Fruit and Nut Trees: New Crops for Sustainable Agriculture in Developing Countries R.R.B. Leakey	479
23	The Introduction and Dispersal of <i>Vitis vinifera</i> into California: A Case Study of the Interaction of People, Plants, Economics, and Environment J. Lapsley	502
24	Genetic Resources of Yeast and Other Micro-Organisms C.W. Bamforth	515
25	Biodiversity of Native Bees and Crop Pollination with Emphasis on California R.W. Thorp	526
26	Aquaculture, the Next Wave of Domestication D. Hedgecock	538
27	Genetic Sustainability and Biodiversity: Challenges to the California Dairy Industry J.F. Medrano	549
	Index	562

The color plates will be found between pages 78 and 79.

Tables

2.1	Ethnohistorically documented 'root and tuber' food plants	
	in Australia and western North America	page 26
2.2	Ethnohistorically documented grasses and forbs harvested for	
	seeds in Australia and western North America	31
2.3	Indigenous staple food crops and domestic herd animals of ten	
	major world agriculture regions	43
4.1	Counts of edible taxa from northern Levant sites with no signs	
	of morphological domestication	95
4.2	Weeds of cultivation present at different sites in the Near East	101
5.1	Comparison of evolutionary rates of domestication syndrome	
	traits across selected crops	127
7.1	Likely origin regions and archaeological correlations for the	
	initial spreads of major language families	165
8.1	Common small-seeded plants in archaeological sites of interior	
	central California	199
8.2	Common weeds in farmers' fields in 1890	210
8.3	Proportion of frequency of disturbance-follower small-seeded	
	plants by time period	212
11.1	Permutation tests of haplotype-sharing per breed with wolf	
	populations	287
13.1	The recognized subpopulations of Oryza sativa	314
14.1	Vernacular names of Lima bean in the Americas, places where	
	registered, and possible language involved	332
14.2	Archaeological records for Lima bean in the Americas	332
14.3	AMOVA results and comparisons of differentiation coefficients	
	among wild forms of Lima bean	335
14.4	Nucleotide diversity and founder effect in gene pools AI and MI	339
15.1	Number of individuals analyzed for polymorphism, heterozygosity	,
	and diversity for five groups of cassava	348
15.2	Nei genetic diversity parameters for each locus and for the total	
	evaluated loci for five groups of cassava	348
15.3	Molecular variance analysis (AMOVA) for 25 landraces	
	of Dioscorea trifida	353

	List of tables	
15.4	Molecular variance analysis (AMOVA) for microsatellite data	
	of 12 Dioscorea trifida accessions	35
16.1	Global area, production, and productivity of pigeonpea	
	during 2007	36
16.2	Gene pools of pigeonpea	36
	Ten maturity groups of pigeonpea	36
18.1	Elevational shifts in crop distributions in the Western Pamirs,	
	1893 to 2006	41
18.2	Siwan agrobiodiversity shifts: crop varieties present or absent	41
22.1	Tree species being domesticated clonally that have potential	
	as components of agroforestry systems	48
24.1	Some examples of organisms used in foodstuff production	51
24.2	Sources of Saccharomyces	51
24.3	Differentiation of ale and lager yeast brewing strains	51
24.4	Commercial sources of brewing yeast	51
24.5	Micro-organisms and cheese production	52
24.6	The microflora of sourdough production	52
24.7	Microbial biomass protein opportunities	52
24.8	Other uses for micro-organisms	52
24.9	Some culture collections	52
27.1	Emphasis placed in dairy traits in national genetic-economic	
	selection indices	55

Figures

3.1	*	page 58
3.2	Climatic curve from Soreq cave and suggested chronological	(1
2.2	correlations with prehistoric entities	61
3.3	The location of Late Upper Paleolithic and Neolithic sites	7.4
4.1	in China mentioned in the text	74
4.1	Positions of the major sites mentioned in the text along with	0.2
4.0	rainfall gradient	93
4.2	Charred wild cereal spikelet bases and grains	94
4.3	Settings for three saddle querns in a room excavated at Jerf	~ -
	el Ahmar	97
4.4	Silicone cast of a fractured fragment of building earth from Jerf	
	el Ahmar	98
4.5	Changes in frequencies of the most common wild food plants at sites	
	in northern Syria	105
5.1	Charts of the quantitative growth of archaeobotany	111
5.2	Charts comparing the change in domestication traits over time	
	in the Near East for barley	114
5.3	Charts comparing the change in domestication traits over time	
	in the Near East for einkorn wheat	115
5.4	Charts comparing the change in domestication traits in Asian rice	119
5.5	Archaeobotanical data for the evolution of domesticated pearl miller	t 120
5.6	Metrical data of achene length plotted against time for two North	
	American species of Asteraceae	121
5.7	Metrical data plotted against time for selected pulse crops	122
5.8	Metrical data on melon seed length and width from the Lower	
	Yangzte, China	126
6.1	Postulated domestication areas for various crops in Central America	ι
	and South America	137
6.2	Early crop plants recorded from microfossil evidence in Central	
	and South America	140
6.3	Allele tgal and phytolith formation and morphology in Zea	144
6.4	Phytoliths with visible carbon inclusions from a modern maize leaf	152
7.1	Suggested homelands for the major Old World language families	162

	List of figures	xi
7.2	The Austronesian language family and major Austronesian	
	language groups	168
7.3	The linkages between Neolithic assemblages in Taiwan and	
	the northern Philippines	169
7.4	The surviving distribution of the Uto-Aztecan language family	1.50
7.6	and its closest neighbors	172
7.5	The distributions of Indo-European and Dravidian languages prior	170
0.1	to the colonial era	176
8.1	California hunter–gatherer and agriculturalist linguistic groups	192
8.2	Major modern agricultural areas in the California Floristic Province	193
8.3	Harvesting hay in the Sacramento Valley, 1915	194
8.4	Major modern agricultural areas overlaid with tribal territories	105
0.5	at European contact	195
8.5	California Indian population densities at European contact	196
8.6	Historic photograph of Letah Garcia (Wukchumni Yokuts)	100
0.7	with shelled acorns	196
8.7	Trends in prehistoric plant use in interior central California	197
8.8	Grace Tex, North Fork Mono, cooking acorn mush	198
8.9	Marie Coho, Mono, remembering how to harvest the greens of California thistle	198
8.10		198
8.10	Ruby Pomona, North Fork Mono, holding two native forbs with edible seeds	198
8.11	Melba Beecher, Mono, holding <i>Sagayu</i> , an edible mushroom	198
	Lois Conner (North Fork Mono/Chuckchansi) harvesting soaproot	198
8.12		198
8.14		190
0.14	disturbances	205
8.15		205
0.15	and cormlets imitate disturbance and landslides	206
8.16		200
	The continuum of human-induced vegetation change from gathering	207
0.117	to domestication	209
8.18		207
0110	seeds	211
8.19		
	barley pasture	218
8.20	• •	
	muffins of native California brome grain	218
8.21	-	
	red maids seeds and wild huckleberries	218
8.22		
	plants as dye stuff for local fiber	218
9.1	Multiple axes of domestication	229
9.2	Pre-adaptive behavioral characteristics in animal domestication	231

xii	List of figures
-----	-----------------

9.3		233
9.4	Reduction in total brain mass and size of fundamental brain	
	structures in domesticated animals	234
9.5	Reduction in the volume of brain structures in different functional	
	systems in domesticated animals	235
9.6	Possible pathways to domestication of animal species	240
9.7	Pathways to domestication: commensal, prey, and directed	249
10.1	Phenotypic diversity of domestic chicken in comparison with	
	ancestral red junglefowl	261
10.2	Camouflage coat color in wild boar piglets and black-spotted	
	Swedish Linderöd piglets	264
10.3	Young Icelandic hen with bright yellow legs due to homozygosity	
	at the yellow skin gene	268
10.4	Two white Lippizaner mares with their colored foals	270
11.1	Neighbor-joining tree of wolf and dog mitochondrial DNA control	
	region sequences	278
11.2	Canine SNP microarray variation, SNP-based estimates of	
	heterozygosity, and observed heterozygosity	281
11.3	Principal components analysis of 171 dogs and 58 Eurasian	
	wolves for 48,036 SNPs	283
11.4	STRUCTURE analysis of ancient dog breeds and 58 Eurasian	
	wolves for 43,000 unlinked SNPs	284
11.5	Neighbor-joining cladogram of 574 dogs and wolves, rooted with	
	coyote data for 43,954 unlinked SNPs	285
11.6	Principal components analysis of 106 SNP genotypes from dogs	
	and gray wolf, coyote, and other wild canids	290
11.7	Correlation between extent of LD and log of the number	
	of registered individuals (14 AKC breeds)	291
11.8	<i>IGF-1</i> intron 2 neighbor-joining tree	293
12.1	The biosynthetic Shikimate pathway and its branches	301
12.2	The geographic distribution of the adult lactase persistence allele	
	in contemporary Europeans	303
12.3	The geographic distribution of hair and eye pigmentation	
	in contemporary Europeans	304
12.4	The Old World geographic distribution for dermal	
	pigmentation	305
14.1	Mesoamerican and Andean domestication centers proposed for	
	Lima beans	337
15.1	Map of Brazil showing the municipalities where cassava landraces	
	were sampled	347
15.2	Dendrogram (Jaccard similarity coefficient and UPGMA method)	
	for 42 landraces of cassava	349
15.3	Dendrogram (UPGMA method and Jaccard similarity coefficient)	
	for 25 landraces of yam with 64 isoenzymatic bands	353

	List of figures	Х
15.4	Dendrogram (UPGMA method and Jaccard similarity coefficient)	
	for 12 landraces of yam with 8 SSR loci	35
16.1	A two-year-old pigeonpea tree in Antigua	36
16.2	Performance of ICPH 2671 over three years and 21 locations	
	in India	36
17.1	Stages in selective incorporation of volunteer manioc plants from	
	seeds in fields of Amerindian cultivators	38
17.2	Morphology and germination strategies of seedlings of maniocs	
	and its closest wild relative	39
17.3	Growth strategy of Dioscorea praehensilis, a wild ancestor	
	of the guinea yam, in southeastern Cameroon	39
17.4	An ant at extrafloral nectaries on cataphylls of Dioscorea	
	praehensilis in southeastern Cameroon	39
18.1	Perched valleys in the Khuf tributary of the River Panj, within	
	the Pamiri highlands of Tajikistan	41
18.2	Overview of the ancient Shali and date groves at Siwa,	
	Egypt	41
19.1	Diversity of cocona (Solanum sessiliflorum) fruit size and shape	42
19.2	Species diversity in Yanesha agriculture	42
	At Mt Khawa Karpo on the Tibetan border	43
	Richness and diversity of herb-shrubs, useful plants, and trees	4.
	Cassava varieties of the same Yanesha were systematically	
1) · · (u)	sampled in 1983–86 and in 1999	43
19.4(b)	Cladistic analyses of morphological characteristics of cassava	
19.1(0)	varieties sampled in 1983–86	43
19.4(c)	-	т.
17.4(0)	varieties sampled in 1999	43
19.5	Yanesha agricultural diversity over time	43
19.6	Tibetans recognize and respond to climate change	44
20.1	The central Maya lowlands in the Yucatán Peninsula	44
20.1	Simplified Pre-Maya Land Architecture: example from a part	
20.2	of the Central Maya Lowlands	44
20.3	Simplified Classic Period land architecture: example from a part	4.
20.3	of the Central Maya Lowlands	45
22.1	Definition of domestication	4.
22.2	Domestication strategy for agroforestry trees	48
22.3	Agroforestry approach to closing the Yield Gap	49
22.4	Evolution of agriculture and the IAASTD Goals	49
22.5	The globalization and localization pathways to rural development	49
23.1	Acreage by decade of wine grape production in California from	-
	1860 to 2000	50
26.1	World production from capture fisheries and aquaculture	54
26.2	Aquaculture production, by species	54
26.3	Phyletic diversity of aquacultural vs. agricultural species	54

Cambridge University Press & Assessment
978-0-521-17087-1 – Biodiversity in Agriculture: Domestication, Evolution, and Sustainability
Edited by Paul Gepts, Thomas R. Famula, Robert L. Bettinger,
Stephen B. Brush, Ardeshir B. Damania, Patrick E. McGuire, Calvin O. Qualset
Frontmatter
More Information

xiv List	of figures	
26.4	Growth heterosis (hybrid vigor), evident in the contrast of inbred	
	and hybrid Pacific oysters	
27.1	Comparative changes in the California dairy industry from 1950	
	to 2007	
27.2	Change in the level of inbreeding and daughter pregnancy rate	
	in US Holsteins from 1960 to 2006	
27.3	Diagram of designs utilized in the estimation of breeding value	
	of dairy sires	
27.4		
	available to query the bovine genome	
27.5		
27.0	production pyramid	

Foreword

Bruce D. Smith

This landmark volume eloquently underscores the enduring legacy of Jack Harlan's broad-ranging and multiple-perspective approach to considering the past development and future challenges of agricultural economies, world-wide. It also highlights the remarkable degree to which plant and animal domestication and agricultural origins continue to expand as a general research question across a wide spectrum of different disciplines in the biological and social sciences.

General areas of inquiry are continually emerging in science, and for widely varying periods of time, they attract and reward researchers, providing interesting and unfolding sequences of questions before eventually closing down as their research potential is exhausted. The evolution of agricultural economies, from first origins to future developments, is an excellent example of an extremely longlived problem area which not only has witnessed substantial growth since the pioneering efforts of Vavilov, Braidwood, Harlan, Heiser, MacNeish, and others, but also holds the very real promise of continuing to expand and provide new research questions for generations to come.

Many of the reasons for this continued expansion of interest and research are obvious. Initial domestication and the subsequent development of agricultural economies was not a single isolated event, for example, but rather occurred in perhaps a dozen different world regions or more, as our distant ancestors independently domesticated a wide variety of different species at different times and in different temporal sequences, providing a rich set of complex regional-scale developmental puzzles for comparative analysis. The subsequent diffusion of domesticates and agricultural economies out of these centers of agricultural origin add to the set of regional-scale comparative examples available for study, with almost every world area experiencing the eventual transition from hunting and gathering to food production economies.

Along with offering complex regional-scale developmental puzzles world-wide, the general research topic of agricultural origins also encompasses the domestication of a rich variety of plants and animals. Each of these in turn provides another complex set of interrelated questions at the species level of analysis for both archaeologists and geneticists: where and when and from which wild progenitor population did different domesticates develop, and in what kinds of environmental and cultural contexts? The past decade in particular has witnessed remarkable advances in our understanding of the early history of a rapidly expanding list of domesticated plants and animals.

xvi Foreword

Along with establishing clear and lasting templates for how to approach domestication and agricultural origins at both the regional and species levels of analysis, focusing on sub-Saharan Africa and its crop plants, Jack Harlan also framed the central issues involved in the larger-scale comparative analysis of different centers (and noncenters) of domestication. In a series of classic papers, Harlan and colleagues also illuminated the cause and effect of evolutionary relationships at work during the initial domestication of seed plants; how human planting and harvesting of stored seed stock created new sets of selective pressures, with the resultant automatic adaptive response of the cultivated plant populations reflected in the genetic and morphological changes identified today under the general heading of the *adaptive syndrome of domestication*.

Jack Harlan clearly recognized that as a general area of inquiry, *agricultural origins and evolution* encompasses a vast landscape of different research questions and calls for sustained communication and collaboration between researchers in many different disciplines. The Harlan II Symposium, and the rich variety of cross-illuminating perspectives that are represented in this volume, reflect the enduring importance of such scholarly interaction, as well as the continuing expansion of interest in this fascinating and rewarding topic.

Contributors

Ogonazar Aknazarov

Desert Research Institute, Khorog, Gorno-Badakhshan Autonomous Oblast, Tajikistan

M. Kat Anderson

USDA-Natural Resources Conservation Service, National Plant Data Center, c/o Department of Plant Sciences, University of California, Davis CA USA

Leif Andersson

Department of Medical Biochemistry and Microbiology, Uppsala University and Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden

C.W. Bamforth

Dept. of Food Science and Technology, University of California, Davis CA USA

Ofer Bar-Yosef

Department of Anthropology, Harvard University, Boston MA USA

Peter Bellwood

School of Archaeology and Anthropology, Australian National University, Canberra ACT Australia

Robert L. Bettinger Department of Anthropology, University of California, Davis CA USA

Aline Borges

Genetics Department, Luiz de Queiroz College of Agriculture, São Paulo University, Piracicaba, SP, Brazil

Eduardo A. Bressan

Agriculture Nuclear Energy Center, São Paulo University, Piracicaba, SP, Brazil

xviii List of contributors

Stephen B. Brush

Department of Human and Community Development, University of California, Davis CA USA

David Cavagnavo

Seed Savers Exchange, Decorah IA USA

M.I. Chacón S.

Facultad de Agronomía, Universidad Nacional de Colombia, Bogotá, Colombia

Loren Cordain

Department of Health and Exercise Science, Colorado State University, Fort Collins CO USA

Ardeshir B. Damania

Department of Plant Sciences, University of California, Davis CA USA

D.G. Debouck

Genetic Resources Unit, International Center for Tropical Agriculture (CIAT), Cali, Colombia

Jared Diamond

Department of Geography, University of California, Los Angeles CA USA

A. Duputié

Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier, France and Section of Integrative Biology, University of Texas at Austin, Austin TX USA

M. Elias

Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-UP), Campus Agrário de Vairão, Vairão, Portugal

Thomas R. Famula

Department of Animal Science, University of California, Davis CA USA

Dorian Q. Fuller

Institute of Archaeology, University College London, London, UK

Paul Gepts

Department of Plant Sciences, University of California, Davis CA USA

C.L. Laxmipathi Gowda

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India

List of contributors

хіх

Melissa M. Gray

Department of Ecology and Evolutionary Biology, University of California, Los Angeles CA USA

David R. Harris

Institute of Archaeology, University College London, London, UK

Dennis Hedgecock

Department of Biological Sciences, University of Southern California, Los Angeles CA USA

Matthew S. Hickey

Department of Health and Exercise Science, Colorado State University, Fort Collins CO USA

Tai Johnson

Department of History, University of Arizona, Tucson AZ USA

Hui Jiang

Bratnell Lab, Boyce Thompson Institute for Plant Research, Ithaca NY USA

Karim-Aly Kassam

Department of Natural Resources, Cornell University, Ithaca NY USA

Shawn Kelly

Parametrics Inc., Albuquerque NM USA

Kami Kim

Departments of Medicine and of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY USA

Michael J. Kovach

Department of Plant Breeding and Genetics, Cornell University, Ithaca NY USA

James Lapsley

Dept. of Viticulture and Enology and the Agricultural Issues Center, University of California, Davis CA USA

Deborah Lawrence

Department of Environmental Science, University of Virginia, Charlottesville VA USA

Roger R.B. Leakey

Agroforestry and Novel Crops Unit, School of Marine and Tropical Biology, James Cook University, Cairns, Queensland, Australia

xx List of contributors

Susan R. McCouch

Department of Plant Breeding and Genetics, Cornell University, Ithaca NY USA

Patrick E. McGuire

Department of Plant Sciences, University of California, Davis CA USA

D.B. McKey

Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier, France and Université Montpellier II, Place Eugène Bataillon, Montpellier, France

Juan F. Medrano

Department of Animal Science, University of California, Davis CA USA

Lin Chau Ming

Horticulture Sector, Agronomical Sciences College, São Paulo State University, Botucatu, SP, Brazil

Laurie Monti

The Christensen Fund, San Francisco CA USA

J.R. Motta-Aldana

Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia

Gary Paul Nabhan

Southwest Center, University of Arizona, Tucson AZ USA

Kayo J.C. Pereira

Genetics Department, Luiz de Queiroz College of Agriculture, São Paulo University, Piracicaba, SP, Brazil

Dolores R. Piperno

Department of Anthropology, The Program in Human Ecology and Archaeobiology, National Museum of Natural History, Washington DC USA and Smithsonian Tropical Research Institute, Balboa, Republic of Panama

B. Pujol

Laboratoire Evolution et Diversité Biologique, Université Paul Sabatier, Toulouse, France

Calvin O. Qualset

Department of Plant Sciences, University of California, Davis CA USA

List of contributors

xxi

Jurema R. Queiroz-Silva

Genetics Department, Luiz de Queiroz College of Agriculture, São Paulo University, Piracicaba, SP, Brazil

Gustavo H. Recchia

Genetics Department, Luiz de Queiroz College of Agriculture, São Paulo University, Piracicaba, SP, Brazil

Jan Salick

William L. Brown Center, Missouri Botanical Garden, St Louis MO USA

K.B. Saxena

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India

Ferrell Sekacucu

Second Mesa, CDP, Hopi Reservation, Navajo County AZ USA (deceased)

Mande Semon

Africa Rice Center (AfricaRice), Cotonou, Benin

M.L. Serrano S.

Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia

S.N. Silim

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya

Marcos V.B.M. Siqueira

Genetics Department, Luiz de Queiroz College of Agriculture, São Paulo University, Piracicaba, SP, Brazil

Bruce D. Smith

The Program in Human Ecology and Archaeobiology, National Museum of Natural History, Smithsonian Institution, Washington DC USA

R.K. Srivastava

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India

Megan Sweeney

Department of Plant Sciences, University of Arizona, Tucson AZ USA

xxii List of contributors

Robbin W. Thorp

Department of Entomology, University of California, Davis CA USA

B.L. Turner II

School of Geographical Sciences and School of Sustainability, Arizona State University, Tempe AZ USA

H.D. Upadhyaya

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India

Elizabeth A. Veasey

Genetics Department, Luiz de Queiroz College of Agriculture, São Paulo University, Piracicaba, SP, Brazil

Bridgett M. vonHoldt

Department of Ecology and Evolutionary Biology, University of California, Los Angeles CA USA

Robert K. Wayne

Department of Ecology and Evolutionary Biology, University of California, Los Angeles CA USA

George Willcox

Archéorient, CNRS, Jalès, Berrias, France

Ken Wilson

The Christensen Fund, San Francisco CA USA

Eric Wohlgemuth

Far Western Anthropological Research Group, Inc., Davis CA USA

Melinda A. Zeder

The Program in Human Ecology and Archaeobiology, National Museum of Natural History, Smithsonian Institution, Washington DC USA

Karl S. Zimmerer

Department of Geography, Pennsylvania State University, State College PA USA

Acknowledgments

We thank the Local Advisory Committee for their untiring contribution towards making this Harlan II Symposium a success. They provided much-needed advice on the program and speakers, in conjunction with the International Advisory Committee. The excellent logistics of the meeting, the organization of the reception and dinner and coffee breaks, and registration is owed to Alma Contreras, Event Coordinator of the UC Davis Conference and Event Services Office.

Staff from the Department of Plant Sciences contributed enthusiastically to a smooth running of the sessions. They include Angela Oates (event planning), Lauri Brandeberry (webmaster), Rob Kerner (IT manager), and Deidra Madderra, Dana Chavez, Sue DiTomaso, Najwa Marrush, Theresa McWayne, and Sabrina Morgan (department business office). Pat Bailey of the UC Davis News Service provided timely assistance with the media. From the Gepts group, James Kami, Matthew Hufford, Kraig Kraft, Shelby Repinski, Margaret Worthington, José Vicente Gomes dos Santos, Raúl Durán, and Vicken Hillis assisted with the visual displays. To all of you a heartfelt thanks.

Our sponsors provided greatly appreciated financial support without which this international symposium would not have been possible. We would like to highlight our home units and heads at the time for their special effort: Depts. of Animal Science (Chair: Mary Delany) and Plant Sciences (Chair: Chris van Kessel).

On a personal note, we would like to thank Adi Damania for assistance with the symposium secretariat under the auspices of the UC Genetic Resources Conservation Program. His perseverance and attention to detail were a great part of the success of the symposium and a foundation for this book.

Local Organizing Committee

Charles Bamforth, Robert Bettinger, Eric Bradford (deceased), Francine Bradley, Steve Brush, Adi Damania, Ellen Dean, Serge Doroshov, Jan Dvořák, Tom Famula (Co-chair), Paul Gepts (Co-chair), Gurdev Khush, Ming-Cheng Luo, Patrick McGuire, Eric Mussen, Dan Potter, Cal Qualset, Leanna Sweha, and Tom Tomich.

xxiv Acknowledgments

International Advisory Committee

Patricia C. Anderson (France), Ofer Bar-Yosef (USA), Fredrick A. Bliss (USA), Michael T. Clegg (USA), Patrick Cunningham (Ireland), Cary Fowler (Italy), Emile Frison (Italy), Arturo Gómez-Pompa (Mexico), David Harris (UK), Roger Leakey (Australia), Stephen O'Brien (USA), Ed Rege (Kenya), Jan Salick (USA), Barbara Schaal (USA), and Stephen Smith (USA).

Sponsors

UC Davis College of Agricultural and Environmental Sciences
Department of Animal Science
Department of Human and Community Development
Department of Plant Sciences
Department of Viticulture and Enology
UC Davis Department of Anthropology, College of Letters and Science
UC Davis Agricultural Sustainability Institute
UC Davis Foundation Plant Services
UC Genetic Resources Conservation Program

California Rice Research Foundation California Crop Improvement Association California League of Food Processors

Missouri Botanic Garden

International Maize and Wheat Improvement Center (CIMMYT) International Center for Agricultural Research in the Dry Areas (ICARDA) International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

Bioversity International System-wide Genetic Resources Program (SGRP) of the Consultative Group on International Agricultural Research (CGIAR)

Food and Agriculture Organization of the United Nations

Harris Moran Seed Company Mars, Inc. and Howard-Yana Shapiro Pioneer, A DuPont Company Seminis Vegetable Seeds, Inc. Syngenta

Paul Gepts and Thomas Famula

co-chairs, Local Organizing Committee Harlan II Symposium