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Introduction

Propositional proof complexity studies the lengths of propositional proofs or

equivalently the time complexity of non-deterministic algorithms accepting

some coNP-complete set. The main problem is the NP versus coNP prob-

lem, a question whether the computational complexity class NP is closed

under complementation. Central objects studied are propositional proof sys-

tems (non-deterministic algorithms accepting the set of propositional tau-

tologies). Time lower bounds then correspond to lengths-of-proofs lower

bounds.

Bounded arithmetic is a generic name for a collection of first-order and

second-order theories of arithmetic linked to propositional proof systems (and to

a variety of other computational complexity topics). The qualification bounded

refers to the fact that the induction axiom is typically restricted to a subclass of

bounded formulas.

The links between propositional proof systems and bounded arithmetic the-

ories have many facets but informally one can view them as two sides of the

same thing: the former is a non-uniform version of the latter. In particular, it

is known that proving lengths-of-proofs lower bounds for propositional proof

systems is very much related to proving independence results for bounded arith-

metic theories. In fact, proving such lower bounds is equivalent to constructing

non-elementary extensions of particular models of bounded arithmetic theories.

This offers a very clean and coherent framework for thinking about lengths-

of-proofs lower bounds, one that has been quite successful in the past (let us

mention just Ajtai’s [2] lower bound for the lengths of proofs of the pigeonhole

principle in constant-depth Frege systems, see Chapter 21).

In this book we introduce a new method for constructing bounded arith-

metic models, and hence for proving independence results and lengths-of-proofs

lower bounds. A brief description could be forcing with random variables but
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2 Forcing with random variables

it also has features of non-standard analysis and of definable ultraproducts.

The novelty lies neither in using forcing in bounded arithmetic or proof com-

plexity (see ‘Remarks on the literature’ below) nor in forcing with random

variables (that is well-established in set theory; see Scott [100] or Jech[49]),

but rather in finding a way how to do this meaningfully in arithmetic, and

further in using families of random variables that are sampled by algorithms

restricted in a particular way (different from one application to another) rather

than using the family of all random variables with a given sample space and

range.

The models are built from random variables defined on a sample space �

which is a non-standard finite set (often parameterized by a subset of {0,1}n

with a non-standard n), and sampled by functions of some restricted com-

putational complexity. This is considered inside an ℵ1-saturated non-standard

model of true arithmetic. One could equivalently work with sequences of bigger

and bigger sample spaces and random variables defined on them, and consider

their limit behavior using a suitable ultrafilter on N, simulating indirectly the

ultraproduct construction.1 However, the use of a non-standard model from

the beginning simplifies things considerably. This is analogous to the situ-

ation in non-standard analysis: while proofs using infinitesimals (and other

features of non-standard analysis) can be translated into the ǫ − δ formal-

ization, the intuition or clarity of the original argument may be lost in the

translation.

Random variables induce probabilistic distributions and probabilities of

events. In particular, two random variables may be neither equal nor unequal;

rather they may be equal with some probability. However, there is a fundamen-

tal problem: probabilities cannot be used as truth-values if classical logic is

to be preserved. The (almost) right choice for the truth-value is the subset of

the sample space consisting of those samples for which the two random vari-

ables are equal. At the heart of our construction is the realization that we can

employ a bit of non-standard analysis (namely Loeb’s measure: Loeb [80]) at

this point: if one identifies two such truth-values (subsets of the sample space)

if their symmetric difference has an infinitesimal measure one gets a complete

Boolean algebra – this is the single most important feature of our method. Eval-

uation of first-order formulas in complete Boolean algebras is very natural and

faithful (as it is well-known from Boole [10] for propositional logic and from

Rasiowa and Sikorski [90] for predicate logic).

1 This construction is explained in a way accessible to readers without a basic logic education in
the Appendix.

www.cambridge.org/9780521154338
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-15433-8 — Forcing with Random Variables and Proof Complexity
Jan Krajíček
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Introduction 3

The models we get are not classical but are Boolean-valued.2 But that is

perfectly sufficient for the purpose of independence results (and lengths-of-

proofs lower bounds): in order to demonstrate that a sentence is not provable

from a set of axioms it is enough to show that its truth value in some model is

smaller than the truth value of any finite conjunction of the axioms.

Although some of the models appear interesting in their own right we interpret

the construction primarily as

A method that reduces an independence result or a lengths-of-proofs lower

bound to a combinatorial/complexity-theoretic statement about random

variables.

The combinatorial/complexity-theoretic statement we refer to here expresses

that the truth-value of a particular sentence (in a particular model) is some

particular value, typically 1B or 0B. The validity of such a statement is a property

of the particular family of random variables forming the model. For the families

we consider it can often be formulated as a statement that an algorithm of a

certain type can (or cannot) perform some computational task successfully for

a high fraction of inputs.

Organization of the book

The book is divided into eight parts and an appendix. Part I (Basics) describes

the general framework of the construction and develops a few basic properties

of the method. This includes witnessing of quantifiers in the structures and

linking the validity in the structures with the probability in the standard model.

Part II (Second-order structures) extends the set-up to two sorted structures,

with one sort for numbers and the other for bounded sets.

In Part III (AC0 world) we construct two structures. The first one is a struc-

ture based on random variables computed by shallow decision trees. This is

quite a rudimentary example and its basic properties are mirrored in several

later models. The second structure is based on deep decision trees and it is

a model of theory V 0
1 . In Part IV (AC0(2) world) we construct an algebraic

structure based on random variables defined by algebraic decision trees. This

structure is a model of the theory Q2V 0
1 , extending V 0

1 by a bounded quantifier

2 One can get classical models by applying a bit of logic: First apply the Löwenheim–Skolem
theorem to the whole model-theoretic situation (i.e. not only the model but also the Boolean
algebra and the truth valuation) to replace it by a countable one, and then apply the
Rasiowa–Sikorski theorem [91] to collapse the Boolean algebra to the two-element Boolean
algebra while preserving joins and meets used for defining the truth values, and hence
collapsing the model to a classical one.
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4 Forcing with random variables

allowing us to count the parity of a bounded set. The key step in analyzing

both the deep tree model and the algebraic model is bounded quantifier elimi-

nation. The combinatorial heart of these elimination procedures is provided by

the Hastad’s switching lemma and by the Razborov–Smolensky’s approxima-

tion method respectively. In both Parts III and IV we use the models to derive

anew a few known undefinability results, witnessing theorems and indepen-

dence results for the theories. The purpose of including this material (as well as

examples in Part VII) is to demonstrate that the method is a viable alternative

to the usual proof-theoretic approach based on some form of a normalization of

proofs.

Part V (Towards proof complexity) describes a general approach using the

models for lengths-of-proofs lower bounds. This follows to a large extentAjtai’s

method in [2], but with some important twists. In Part VI (Proof complexity of

Fd and Fd (⊕)) we use this approach to give a new proof of an exponential

lower bound for PHP (the pigeonhole principle) proofs in constant-depth Frege

systems. Then we discuss a long-standing open problem to prove the same

lower bound also for constant-depth Frege systems with the parity gate. We do

not manage to construct a model that would prove the elusive lower bound but

we review some possibly relevant material about algebraic proof systems and,

more importantly, we discuss in detail the issues that any construction of the

desired structure has to tackle (in particular, the necessity of partially defined

random variables). The models considered in this part are quite analogous to

models in Parts III and IV.

The structures in Parts III–VI are second-order. In Part VII (Polynomial-

time and higher worlds) we return to the first-order formalization and construct

several models for theories like PV (polynomially verifiable), S1
2 and T 1

2 and

derive in this way some of the most important known witnessing theorems and

conditional independence results in bounded arithmetic. In this part we also note

a link between pseudorandom sets and a Löwenheim–Skolem phenomenon.

Further, we define a model of PV naturally interpreting structural complexity

results about random oracle.

In Part VIII (Proof complexity of EF and beyond) we first overview aims

of proof complexity of strong proof systems and recall, in particular, back-

ground facts relevant to the Extended Frege proof system EF and to bounded

arithmetic theories related to EF. We then expose in some detail the emerg-

ing theory of proof complexity generators aimed at constructing examples of

hard tautologies. We also discuss several conjectures regarding these genera-

tors: on the hardness of proving circuit lower bounds, Razborov’s conjecture

about the Nisan–Wigderson generator and Extended Frege system, a conjecture

about using random sparse Nisan–Wigderson generators as gadgets in gadget
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Introduction 5

generators, and related Rudich’s demi-bit conjecture. Finally we construct a

model relevant to some of these conjectures.

The main text is supplemented by an appendix in which we present in a self-

contained and quite elementary way the construction of an ultrapower extension

of the standard model of natural numbers. We also try to convey, using several

examples, some mental picture about the model so that even a reader who is

not familiar with non-standard methods can develop some intuition and follow

the arguments in the main text.

Remarks on the literature

A form of forcing has been applied in bounded arithmetic earlier. Paris and

Wilkie [86] and later Ajtai [2, 3, 4] and Riis [98] used a simple variant of

Robinson’s model-theoretic forcing (although combined with an involved com-

binatorial reduction in Ajtai’s [2, 3, 4]). Wilkie3 described a construction of

Boolean-valued models of the theory S1
2 and reproved using it a relation –

known previously from Cook [28] and Buss [11] – between S1
2 and the Extended

Frege proof system EF. His construction has been further extended by Krajíček

[55, 57, 60, 56] to a wider context. With a slight simplification one can describe

the Boolean algebras involved in these constructions as Lindenbaum algebras

but not based on provable equivalence of formulas (or circuits) as they are

defined classically but rather on feasibly provable (i.e. with proofs of polyno-

mially bounded length) equivalence. This works well in the sense that any valid

lower bound can be proved, in principle, by such a forcing. But on the other

hand the algebras are defined using the notion of a feasible proof about which

we are supposed to say something by the construction in the first place, and

so it is in a sense a vicious circle. Takeuti and Yasumoto [103, 104] changed

the feasibly provable equivalence to simply ‘true equivalence’ – breaking this

vicious circle – but it apparently did not help much as we know very little about

the power of Boolean circuits of feasible size. Most importantly, the algebras

used in all these constructions are not complete but are closed only under some

definable unions. That makes it very hard to use them.

Background

This is an investigation in bounded arithmetic and in proof complexity and we

expect that, ideally, the reader is familiar with established basic definitions,

3 Unpublished lecture at the International Congress on Logic, Methodology and Philosophy of
Science in Moscow, 1987.
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6 Forcing with random variables

facts, methods and aims of the field. The relevant background in bounded arith-

metic and proof complexity can be found in Krajíček [56] but some reader may

find useful shorter explanations of some basic points in Krajíček [53, 57, 61, 62]

or in an excellent survey by Pudlák [89]. Nevertheless we always briefly review

the relevant theories and propositional proof systems before they are studied,

and thus a reader with at least a minimal logic background should be able to

study the book. In addition Chapter 27 gives some very general proof complex-

ity background. Recently Cook and Nguyen [30] offered an excellent exposition

of basic theories and their relations to proof systems. Propositional proof sys-

tems and their complexity are also treated by Clote and Kranakis [25]. A reader

looking for a background in model theory, and non-standard models in partic-

ular, may consult Chang and Keisler [21], Marker [83] (ultrapowers are there

in Exercises 2.5.19 – 2.5.22 and 4.5.37) or Kaye [52].

Despite the natural character and simplicity of Boolean-valued models they

were discovered only in the late 1960s by P. Vopěnka, and by D. Scott and

R. Solovay as their versions of Cohen’s forcing; the paper by Scott [100] is

a beautiful exposition of the basic ideas aimed at non-logicians, the best to

date (it also contains detailed bibliographical/historical comments4). The paper

by Scott [100] as well as virtually all later expositions (e.g. in Takeuti and

Zaring [105] or in Jech [49]) consider only Boolean-valued models of set theory.

Mansfield [82] attempts a general theory but concentrates on model-theoretic

properties of the class of such models, as opposed to properties of particular

models, and gives a version that yields only elementary extensions and hence

is unsuitable for independence results.

4 Takeuti reports in [103] that Gödel recognized in Boolean-valued models a model-theoretic
version of a reinterpretation of logical operations that he had developed earlier but had never
used for independence results as it was too complicated.
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1

The definition of the models

1.1 The ambient model of arithmetic

Let Lall be the language containing symbols for every relation and function on

the natural numbers N; each symbol from Lall has a canonical interpretation in

N. Let M be an ℵ1-saturated model1 of the true arithmetic in the language Lall.

Such a model exists by general model-theoretic constructions; see Hodges [43].

Definable sets mean definable with parameters, unless specified otherwise.

The ℵ1-saturation implies the following:

(1) If ak , k ∈ N, is a countable family of elements of M then there exists a

non-standard t ∈ M and a sequence (bi)i<t ∈ M such that bk = ak for all

k ∈ N.

We shall often denote this sequence of length t simply (ai)i<t .

For example, if all elements {ak}k∈N obey some definable property P then –

by induction in M (aka overspill, see the Appendix) – also some bs with a

non-standard index s < t will obey P. Such an element bs will serve well as ‘a

limit’ (interpreted here informally) of the sequence {ak}k∈N.

Another property implied by the ℵ1-saturation (and equal to it if we used a

countable language) is the following:

(2) If Ak , k ∈ N, is a countable family of definable subsets of M such that
⋂

i<k Ai �= ∅ for all k ≥ 1, then
⋂

k Ak �= ∅.

However, the intersection
⋂

k Ak does not need to be definable in M.

These two statements are essentially the only consequences of the ℵ1-saturation

that we will use.

1 In the Appendix we give an elementary and self-contained construction (the so-called
ultrapower) of such a model.
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10 Basics

The ambient model M will suffice for our purposes everywhere in this book.

However, in general we could take for M an ℵ1-saturated elementary extension

of N in a many sorted language having names not only for all elements of N

and relations and functions on N as Lall has, but also names for all families of

sets, families of families of sets, etc., for the whole so-called superstructure

(this is commonly done in non-standard analysis and this terminology is used

there). In such a rich model the properties above would hold also for sequences

of sets, families, etc.

1.2 The Boolean algebras

Let � ∈ M be an arbitrary infinite set called a sample space. As it is an element

of M, it is M-finite. Let N = |�| be the size of � in the sense of M. It is

necessarily non-standard.

Let A := {A ∈ M | A ⊆ �}. This is a Boolean algebra but not a σ -algebra as

the class of definable sets is not closed under all countable unions (for example,

while it contains all singletons it does not contain the countable set of those

elements of � having only standardly many predecessors in �). The counting

measure (i.e. the uniform probability) on A is defined by:

A ∈ A → |A|/N .

Its values are the M-rationals. A positive M-rational is called infinitesimal if

it is smaller that all fractions 1
k

, k ∈ N.

Define an ideal I ⊆ A by:

A ∈ I iff |A|/N is infinitesimal.

I is not definable in M (otherwise the set of natural numbers N would be

definable, violating the overspill in M). Using I define a Boolean algebra

B := A/I.

The induced measure on B (the so-called Loeb’s measure) will be denoted µ.

Hence µ(b) for b ∈ B is the standard part of |B|/N (i.e. the unique standard

real infinitesimally close to it) for any B ∈ A such that B/I = b. It is a measure

in the ordinary sense: The values of µ lie in the reals R. It is σ -additive and a

strict measure: µ(b) > 0 if b �= 0B.

The following key lemma is a combination of two well-known facts, one

from non-standard analysis and one from measure theory.
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1 The definition of the models 11

Lemma 1.2.1 B is a complete Boolean algebra.

Proof: First, as in the construction of Loeb’s measure Loeb [80], we use the

ℵ1-saturation to show that

Claim 1: B is a σ -algebra and the measure µ is σ -additive.

To establish the claim let {bk}k∈N be a countable subset of B.Assume bk = Bk/I

for Bks from A. We may assume, without loss of generality, that B0 ⊆ B1 ⊆

. . . . It is enough to find C ∈ A such that Bk ⊆ C for all k ∈ N and µ(C) =

limk→∞ µ(Bk). It holds that for any k ≥ 1 there is nk ≥ 1 such that for all

m > ℓ ≥ nk

|Bℓ|

N
≤

|Bm|

N
≤

|Bℓ|

N
+

1

k
.

We may assume, by taking subsequence {Bnk
}k∈N, that nk = k.

Take a non-standard extension {Bi}i<t of {Bk}k∈N guaranteed to exist by ℵ1-

saturation (each Bk is an element of M). Consider the following property P

parameterized by s:

Bs ∈ A ∧ ∀i ≤ s;Bi ⊆ Bs ∧
|Bi|

N
≤

|Bs|

N
≤

|Bi|

N
+

1

i
.

Property P is obeyed by all standard s and hence, by induction in M, also by

some non-standard s0 < t.

It is easy to verify that C := Bs0
has the required properties.

Claim 2: B satisfies the ccc condition: any antichain is at most countable.

This holds because the measure is strictly positive, i.e. µ(b) > 0 for b �= OB:

Any antichain can contain only finitely many (non-zero) elements with measure

in each interval (1/(n + 1),1/n], n ≥ 1.

As a consequence we get

Claim 3: Any family of elements of B has the same set of upper bounds as one

of its countable subfamilies.

To see this, note that a family has the same set of upper bounds as the ideal

it generates which in turn has the same set of upper bounds as any maximal

antichain it contains – such antichains are countable by ccc (Claim 2), and each

element of the antichain is majorized by a union of a finite number of elements

of the family).
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