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1 Prologue

HELMUT Z. BAUMERT
(baumert@iamaris.net)

In mathematics you don’t understand things.
You just get used to them.

Johann von Neumann, 1903–1957

In contrast to the engineer who deals mostly with non-
stratified flows of limited Reynolds number but other spe-
cific challenges, turbulence studied by oceanographers is
influenced by stratification (and thus by internal waves)
and by extremely high Reynolds numbers.

Part I of the book begins with a sketch of the phys-
ical nature of turbulence (Chapter 2), continues with new
descriptions for stratified conditions (Chapters 3–6), and
is completed by accounts of intermittency (Chapter 7) and
horizontal mixing processes (Chapter 8). For the many other
aspects of turbulence and its theory the reader is referred
to classical textbooks (Batchelor, 1960, 1967; Monin and
Yaglom, 1967; Rotta, 1972; Tennekes and Lumley, 1976;
Hinze, 1975; Monin and Yaglom, 1975; Lesieur, 1997;
Pope, 2000).

Chapter 3 presents a new two-equation closure for
energy and enstrophy in homogeneously stratified shear
layers and the collapse of turbulence into internal waves.
Chapter 4 applies this closure to spatially inhomogeneous
conditions and predicts the Monin–Obukhov similarity
scaling correctly.

The dichotomy of continuity and discontinuity has
a long history. We can describe the strange dual nature
of light only with both the continuous field concept and
the discontinuous particle concept. In theoretical fluid dy-
namics, the past was governed by continuous images (the
Navier–Stokes or NS equation and its relatives). Discrete-
particle concepts for fluid motions were developed only
for computational purposes (Boltzmann-lattice, lattice-gas,
and random-vortex methods; for references see e.g. Lesieur,
1997).

In particular, theories of turbulence were more or
less exclusively gained from Friedman–Keller expansions

of the NS equations, averaging, and use of closure
hypotheses based on observations, symmetry, and heuristic
arguments. This approach has led to increasing numbers
of “universal” closure parameters in models of increasing
complexity, as illustrated for instance by the work of Canuto
et al. (2001). For marine applications, Burchard (2002b) has
given an account of this NS-based approach.

A counterpart of the continuous concept, i.e. the im-
age of high-Re turbulence as a (large) ensemble of discrete
elementary vortex structures, is presented in Chapter 5 – to
the best of our knowledge, for the first time. It gives simple
though powerful equations for energy and enstrophy, but is
not able to predict spectral characteristics. The complemen-
tary spectral description is derived systematically from first
principles in Chapter 6 – for the stratified case; to the best of
our knowledge, for the first time, too. It is based on the con-
tinuous NS equation and uses a successive, RNG-related
scale-elimination technique.

The new results are completed by reviews of two
other fundamental aspects of turbulence: intermittency
(Chapter 7) and horizontal mixing (Chapter 8). Chapter 7
presents log-normal, log-gamma, log-Poisson, and log-
Lévy models for the intermittency of turbulence. Chapter 8
includes an overview on phenomenology and empirical re-
lations for the poorly understood mixing processes in the
surface plane of an ocean where non-coherent surface waves
and horizontal eddies act simultaneously (Section 8.2) and
the theory of this process (Section 8.3), which is based on
stochastic calculus and spectral wave properties. It gives
a novel derivation of the coefficient of horizontal particle
separation, which was first found for the atmosphere by
Richardson (1926) and for the sea surface by Richardson
and Stommel (1948).
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2 Turbulence: its origins and
structure

JOEL FERZIGER

2.1 Introduction: the nature of turbulence
It is difficult even for expert researchers to agree

on a definition of turbulence. Required elements that are
generally agreed upon include the following.

� Three-dimensionality. The flow may be two-
dimensional in the mean, but turbulent flows, at
least all the ones of interest to geophysicists and
engineers, are always fully three-dimensional. Two-
dimensional turbulence exists, but is a very differ-
ent phenomenon; it is relevant to the large scales
of geophysical flows but, even in those flows, the
smallest scales are three-dimensional. We shall say
something about two-dimensional turbulence below,
since understanding it is important and relevant to
understanding turbulence in general.

� Unsteadiness. A turbulent flow may be steady in
some statistical mean sense, but turbulent flows are
always highly unsteady. They are also characterized
by a wide range of time scales on which fluctuations
occur (see below).

� Strong vorticity. Almost all flows contain some vor-
ticity, but in turbulent flows there are regions of
strong coherent vorticity and other regions contain-
ing little vorticity; it is the fluctuations of the vortic-
ity that are important. The process of vortex stretch-
ing is essential to three-dimensional turbulence.

� Unpredictability. Turbulent flows are characterized
by the property that two flows whose present states
differ only slightly will develop so that the differ-
ences increase exponentially with time. At some
much later time, it will be essentially impossible to
recognize that the two flows originated from nearly
identical states. However, the statistical properties
of the flows will remain nearly indistinguishable.

� Broad spectrum. We have already noted that turbu-
lent flows fluctuate on a broad range of time scales.
They also contain fluctuations on a wide range of
length scales; furthermore, the range of scales in-
creases with the Reynolds number.

Beyond these properties on which most people agree, it
is difficult to say much that is very general. Most people
would agree that turbulent flows are highly random and/or
noisy; the term chaotic could be used, but it has been given
a more restricted meaning in recent years.

However, there is more to turbulence than random-
ness. It is generally agreed that coherent structures exist
in nearly all turbulent flows; one needs to be careful with
the term “coherent structure” because, despite considerable
discussion, an agreed definition of this term does not yet ex-
ist. There is, however, general agreement that they are im-
portant. Although coherent structures probably account for
only a small fraction of the turbulence energy (the fraction
is probably dependent on the flow and the parameters that
characterize it), they are apparently responsible for more
than their fair share of the transport of properties such as
species, mass, momentum, and energy. The coherent struc-
tures of a particular flow are similar in form but far from
identical and they do not appear regularly either in time or
in space. It is this lack of regularity that makes them so
difficult to define and describe. The largest part of the tur-
bulence energy is apparently due to truly random motion
(which may be the remains of old coherent structures) and
is probably responsible for much of the irregularity of the
coherent structures.

This picture helps explain why turbulence is such
a difficult problem. If it were completely random, statisti-
cal methods would probably have solved the problem long
ago. If it were purely deterministic, computer simulation
might have solved the problem by now. In fact, turbulence
is sufficiently incoherent that the signal-to-noise ratio of the
coherent structures is very low; at the same time, the lack of
a clear definition of a coherent structure and the variation in
the size, duration, and time of occurrence makes their educ-
tion from the noisy data nearly impossible. Indeed, this is
one of the most difficult problems in signal processing.

When we add to this picture the probability that the
coherent structures are different in each flow, we see that
the likelihood of finding a simple method for predicting
all flows (other than solving the Navier–Stokes equations
via direct numerical simulation) is exceedingly small. The
search for a single universal method capable of predicting
all turbulent flows has gone on for a long time and, although
it has produced many useful results, it is still far from the
ultimate goal.

It should be noted that, because turbulence is so far
from being completely understood, there is a wide range
of ideas on what it is and on its kinematics and dynamics.
Every researcher has his or her own ideas based on expe-
rience and heated discussions often arise when the subject
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2.2 Laminar–turbulent transition 5

is discussed. In this author’s opinion, almost everyone has
some part of the “truth.” Indeed, it is not uncommon for peo-
ple to state similar ideas or describe the same phenomenon
in different ways. The lack of agreement may confuse some-
one new to the subject, so it is wise to read several view-
points and form one’s own opinion. These remarks certainly
apply to the ideas in this chapter!

2.2 Laminar–turbulent transition
2.2.1 Linear stability theory

To understand the physics of turbulence in depth, it
is important to look at the origins of turbulence. Almost all
turbulence begins in the process of transition from laminar
to turbulent flow. These processes have been studied for a
long time and a great deal of progress in understanding them
has been achieved by a combination of experiments, simu-
lations, and theory. There is, however, still a great deal more
to learn. It is worth reviewing some of what is known about
transition because turbulence retains many of the charac-
teristics of the transition process that created it and because
transition is often easier to understand.

The most fundamental theoretical tool of transition
studies is linear perturbation theory. In this approach, one
assumes that an initially laminar flow (which is itself a
solution to the Navier–Stokes equations) is modified by a
weak disturbance and asks whether the disturbance will be
amplified. Since the disturbance is weak, the Navier–Stokes
equations may be linearized about the laminar solution to
produce a linear set of equations for the disturbance. It is
further assumed that, after the initial introduction of the
perturbation, there is no further forcing of the flow; the
perturbation must grow on its own or die out.

Since there is no forcing, the equations for the per-
turbation are linear and homogeneous in the disturbance
(the difference between the actual state of the flow and the
original laminar state). Furthermore, the boundary condi-
tions are not modified by the perturbation, so the boundary
conditions on the latter are also homogeneous. Given these
properties, and further assuming that the laminar flow can
be treated as a parallel flow, one can assume that the so-
lution has a separable form with a time dependence that is
exponential. The result is an eigenvalue problem in the spa-
tial coordinates. The problem is then to determine whether
the solution grows in time; this depends on the sign of the
real part of the eigenvalue. (In some versions of the theory,
one must look at the imaginary part of the eigenvalue, but
that is due to the use of a different convention for naming
the eigenvalue.) One can also ask whether the perturbation
grows with downstream distance, but this is usually a more
difficult problem.

There is no intent to review linear stability theory in
detail here. The interested reader should consult the works
by Drazin and Reid (1981) and Betchov and Criminale

(1967) for excellent introductions to the subject. We merely
mention a few significant points. In many flows, the mecha-
nism of instability is essentially inviscid, i.e. instability oc-
curs even when the effects of viscosity are ignored. In such
a flow, the growth rate of the disturbance usually decreases
when the effects of viscosity are taken into account. There
are other flows (an important example is given below) in
which viscosity plays an essential role in the instability. The
inviscid linear perturbation equation is called the Rayleigh
equation and is of second order in the spatial coordinates.
When viscosity is included, the equation becomes of fourth
order in space and is called the Orr–Sommerfeld equation.

2.2.2 Primary instability of free shear flows
The simplest instability to analyze (and the first to be

studied historically) is the instability of the mixing layer,
a region between two fluid layers of differing speeds. A
typical velocity profile is shown in Fig. 2.1. This type of
flow is inviscidly unstable if the velocity profile contains an
inflection point or, which is the same thing, a maximum of
the vorticity. The mixing layer rolls up into discrete vortices
whose separation is a few times the thickness of the laminar
layer. This is the famous Kelvin–Helmholtz instability. It
can be understood via a number of physical arguments.
The rolled-up state is shown in Fig. 2.2. It is important
to note that this mechanism produces intense vortices that
play an important role in what happens later, including the
turbulent state. The instability favors the growth of vortices
that are perpendicular to the main flow, although slightly
skewed vortices can be produced under certain conditions.
The two-dimensional array of vortices may be viewed as a
kind of two-dimensional turbulence.

In general, however, the layer produced by this
roll-up process does not have the same form as a two-
dimensional array in which all of the vorticity is

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Velocity (U)

−1.0

−0.5

0

0.5

1.0

H
ei

gh
t (

y
)

Fig. 2.1. A typical mixing layer profile.
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6 Turbulence: its origins and structure

U1

U2

Fig. 2.2. The result of Kelvin–Helmholtz instability. The mixing
layer has rolled-up into a line of intense two-dimensional vortices.

Dividing streamline

VortexVortex

Braid

Streamline

Fig. 2.3. The detailed structure of a portion of the rolled-up mixing
layer.

concentrated in small, nearly circular, regions surrounded
by regions nearly devoid of vorticity. Some of the vorticity
remains outside the vortices and there is an inflow into the
vortices through the braid region as shown in Fig. 2.3. Also,
except at low Reynolds number, the distribution of vortic-
ity within the rolled-up vortices is not uniform. As we shall
see, this structure may affect the dynamics of what happens
later in important ways.

When the flow has a velocity profile that is not mono-
tonic, such as in a jet or a wake, the instability mechanism
is similar to what is observed in the mixing layer but a little
more complicated. A velocity profile of the laminar flow
is shown in Fig. 2.4. In this case, the instability produces
roll-up of the two sides of the flow separately. (Generally,
vorticity of each sign tends to agglomerate into concen-
trated vortices, whereas vorticity of opposite sign tends to
segregate.) These roll-ups are similar to that observed in
the mixing layer (see above), but the interesting new fea-
ture is that the instability tends to cause the vortices in the
two layers to be staggered with respect to each other. This
arrangement is known as the von Kármán vortex street and
has been observed in the atmosphere and the ocean as well
as in the laboratory. It is illustrated in Fig. 2.5.

These are the most important instability mechanisms
that operate in simple free shear flows. More complex lam-
inar flows produce more complex rolled-up states and there
are important examples of such flows. Of special impor-
tance is what happens when the initial state of the flow is
three-dimensional or additional strains such as rotation and

curvature act on the flow. The result is almost always a flow
more complex than the ones described above; these flows
contain discrete vortices of more complex structure than
those illustrated in the figures. These flows tend to become
fully turbulent much more readily than do the ones shown
above. This will be discussed later.

As we have already seen, in clean low-Reynolds-
number flows, the roll-up process tends to be quite regular
and proceeds more or less as illustrated above. After the
roll-up has been completed, several processes that increase
the complexity of the flow may occur. It is possible for the
flow to remain two-dimensional. However, any irregularity
of the vortex array (deviation from perfect alignment, vari-
ation in the separation or strength of the vortices) can cause
interactions among the vortices that increase the complexity
of the flow and the rate of growth of its thickness. Probably
the most important of these is a process of agglomeration
that usually occurs between pairs of vortices and leads to an
increase in vortex size and a decrease in number of vortices.
This process, which is usually called pairing, is illustrated
in Fig. 2.6 and was first described by Brown and Roshko
(1974).
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Fig. 2.4. A typical profile of a laminar jet.

Fig. 2.5. The result of instability in a jet. The instability produces a
set of staggered two-dimensional vortices called a von Kármán
street.
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2.2 Laminar–turbulent transition 7

Fig. 2.6. An illustration of vortex pairing.

Fig. 2.7. An illustration of vortex tearing.

Other related processes include ones in which more
than two vortices combine to form still larger vortices. In
general, this process occurs only when the flow is carefully
controlled and prepared. An alternative is the process of
“tearing” in which one small vortex located between two
larger ones is torn apart and its vorticity is redistributed
to its larger neighbors. This process was first described by
Moore and Saffman (1975) and is illustrated in Fig. 2.7.

2.2.3 Later stages of transition in free shear flows
We saw earlier that instability of free shear flows of

simple structure tends to produce a flow containing large
two-dimensional vortices. These states strongly resemble
the two-dimensional turbulence that was mentioned in the
preceding section and will be discussed further later. Un-
less the flow is carefully prepared, it does not remain in
a two-dimensional state for very long. Under laboratory
conditions or in a carefully controlled numerical simula-
tion, the process of transition to a three-dimensional state
may occur in a relatively orderly fashion, but, in highly
perturbed flows, the process may be much more irregular.
Several mechanisms that can operate at this stage of the de-
velopment of the flow have been described; each has been
proposed as the sole mechanism for transition, but it is likely
that each mechanism is active and plays some role in the
development. It is also likely that different mechanisms are
really only different ways of describing the same physics.

As we noted, after the roll-up process created by
Kelvin–Helmholtz instability, some vorticity remains be-
tween the vortices; it may become subject to a secondary
instability. This may take several forms. One possibility
was described by Lin and Corcos (1984). In this process,
which can be called a secondary instability, the vorticity in
the “braid” region between the discrete vortices is strained
by the vortices and undergoes an instability that stretches
it into longitudinal vortices that are aligned with the flow.
This process is illustrated in Fig. 2.8. The result is a flow
that is much more three-dimensional than the one that pre-
ceded it. However, this is just one of several processes that
may occur.

A single two-dimensional vortex is itself subject to
instability. Imagine that the vortex develops a slight kink
such as the one illustrated in Fig. 2.9. The self-induced
velocity created by the kink will tend to lift it (whether it
goes up or down depends on the geometry and the sign of
the vorticity) and lengthen it in the streamwise direction.
The final result will be a longitudinal or hairpin vortex.

If the vortex lies in a background shear flow, as is of-
ten the case, the lifting will also bring the tip of the kink into
a region of (say) higher-speed flow that will pull the vortex
and accentuate its stretching. This process is more effective

Fig. 2.8. The secondary (Lin–Corcos) instability process which
produces longitudinal vortices.

Fig. 2.9. A kink in a two dimensional vortex (left) develops into an
extended longitudinal vortex (right).

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-15372-0 - Marine Turbulence: Theories, Observations, and Models
Edited by Helmut Z. Baumert, John Simpson and Jurgen Sundermann
Excerpt
More information

http://www.cambridge.org/9780521153720
http://www.cambridge.org
http://www.cambridge.org


8 Turbulence: its origins and structure

at stretching the vortex and thus at distorting the flow than
the one described above. If the vortex is a member of an
array of similar vortices, such as the array resulting from
Kelvin–Helmholtz instability, the stretching of the kink will
induce kinking of the neighboring vortex, producing a kind
of chain reaction. If this process is described by instability
theory, the initial perturbation will be sinusoidal and a regu-
lar set of kinks will be produced, leading to a regular system
of longitudinal vortices. (When this process occurs in vortex
rings, it is known as the Widnall instability.) The longitu-
dinal vortices, unlike the Kelvin–Helmholtz vortices, have
alternating signs of the vorticity.

The kinking may also result in a process similar to
pairing occurring locally. This has been called local pairing
and, when it occurs in a regular manner over the length of the
vortices, i.e. when it is described in terms of an instability,
it is called helical pairing.

Local pairing can also result in a reconnection pro-
cess in which the connected vortices separate again, but in
a way that leaves a loop in the connected vortices.

Any of these processes produces a much more com-
plex flow than the array of two-dimensional vortices that
preceded it. Furthermore, the three-dimensional flow found
at this stage is apparently much more sensitive to small dis-
turbances than were the earlier stages of the flow and, in a
relatively short time, the flow becomes a tangle of vortices;
at this stage, most people would call the flow fully turbulent.

2.2.4 Transition in wall-bounded flows
In wall-bounded flows such as boundary-layer or

channel flows, the process of transition from laminar to
turbulent flow is quite different. In free shear flows, transi-
tion is caused by an instability that is essentially inviscid in
nature; viscosity simply reduces its rate of growth. The in-
stability requires that there be an inflection point (which is
the same thing as a maximum in the vorticity) in the veloc-
ity profile. In wall-bounded flows the story is very different.
To start with, the velocity profiles do not usually have in-
flection points (or, if they do, they occur at the wall) and are
inviscidly unstable. Instability thus requires the presence of
viscosity.

The analysis of the stability of wall-bounded flows is
quite a bit more complicated than that for free shear flows.
We merely cite a few key results. Because the laminar veloc-
ity profile does not contain an inflection point (there may
be one at the wall that is not relevant), instability occurs
only in the presence of viscosity and there is a minimum
Reynolds number for instability; for the Blasius boundary
layer, it is 5772, a rather high value. Beyond the critical
Reynolds number the growth rates of the instability are
generally much smaller than those caused by the inviscid
instability of the mixing layer. Furthermore, below the crit-
ical Reynolds number, the decay of the least stable modes

is very slow, so these modes may be regarded as a perma-
nent part of the flow. Finally, experimental results show that
transition usually occurs at Reynolds numbers far below the
critical value, a result that was not explained until relatively
recently.

The nature of the process was discovered through
numerical simulation in the early 1980s. Although linear
stability theory shows that the flow is stable with respect
to two-dimensional perturbations, the least stable (slowest-
decaying) modes for the boundary layer, which are called
Tollmien–Schlichting waves, resemble the vortices pro-
duced by Kelvin–Helmholtz instability, i.e. they produce
concentrations of vorticity. At sub-critical Reynolds num-
bers, the Tollmien–Schlichting waves are essentially a per-
manent part of the flow. These waves, if they are strong
enough, may be subject to a secondary instability very sim-
ilar to the ones found in free shear flows in which a kink
is amplified and stretched to produce longitudinal vortices.
Once these vortices have formed, transition to a fully de-
veloped turbulent state occurs very rapidly. The essential
processes that complete the transition take place rather far
from the wall.

Although the relatively orderly transition process
just described can be produced in the laboratory and is very
important for understanding some of what happens in a
fully turbulent flow, naturally occurring flows often contain
large perturbations (free-stream turbulence) that cause the
transition process to occur in a much more haphazard way.
We shall next describe this process.

2.2.5 Bypass transition
The picture of laminar–turbulent transition pre-

sented above is an orderly one in which an instability first
produces an array of vortical structures. Then a secondary
instability produces a more complex pattern of vortices.
There may be tertiary instabilities but, finally, the flow be-
comes subject to so many simultaneous instabilities that
it breaks down into the chaotic-looking flow that we call
fully developed turbulence. This orderly progression to tur-
bulence is a traditional picture that was accepted as the route
to turbulence for a long time.

Although naturally occurring transition need not be
so simple, the picture presented in the last paragraph gives
a lot of insight into the mechanisms that operate in flows.
Since many of the same mechanisms operate in turbulent
flows, this picture has greatly increased our understanding
of turbulence and, especially, of the coherent structures that
are found in them. Indeed, research on the orderly transition
process continues and is very important in its own right.

To produce the kind of transition we have just de-
scribed in the laboratory, it is essential to assure that the flow
entering the test section is extremely quiet, that is to say,
the turbulence level must be very low. Investigations of this
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2.3 Fully turbulent flows 9

kind are important because they are relevant to transition on
aircraft wings, the technology that initially drove research
on transition. However, it has been recognized that there
are other kinds of transition.

When the incoming flow contains a relatively high
level of turbulence, that turbulence can induce a kind of
transition, called bypass transition, that does not proceed
through the orderly progression of states described earlier.
Instead, there appears to be a rapid transition to a fully tur-
bulent state without any apparent order or structure. The co-
herent structures that characterize turbulence may develop
later. Although bypass transition is important, its very dis-
order makes it difficult to study in detail. As a result, it is
not well understood and we shall say no more about it here.

2.3 Fully turbulent flows
When a flow is fully turbulent, i.e. when it has

reached a state in which the averaged quantities change
slowly with respect to downstream distance or time, it gen-
erally has a rough equilibrium between the rate at which
turbulence is produced and the rate at which it is destroyed.

As we have noted, most flows of interest to geo-
physicists and engineers are dominated by shear. By this
we mean that the largest changes in the velocity occur in
directions that are approximately normal to the principal
direction of the flow. In such flows, the principal mecha-
nism for the production of turbulence and the transport of
conserved quantities is similar to the one that we described
earlier.

In this section, we shall look at some of the physical
mechanisms that operate in turbulent flows. These will be
seen to be quite similar to those involved in the transition
process, so one might say that, in many flows, the flow
remembers how it first became turbulent.

We shall begin with the simplest turbulent flows,
two-dimensional turbulence, and homogeneous flows, and
then discuss some turbulent shear flows.

2.3.1 Two-dimensional turbulence
If turbulence is constrained to be two-dimensional

(in most laboratory situations this is nearly impossible),
the only processes known to occur are the ones mentioned
above: roll-up, pairing (or other agglomeration), and tear-
ing. A two-dimensional flow can be regarded as a collection
of discrete vortices. As noted, vortices of similar sign tend
to combine to form larger vortices, whereas those of oppo-
site signs tend to remain separate. As a result, after some
time, a two-dimensional turbulent flow tends toward a state
that consists of a relatively small number of large vortices.
Thus the tendency in two-dimensional turbulence is for the
energy to be transferred to ever larger scales.

There are other processes that play major roles in
two-dimensional turbulence. For example, a two-dimen-

sional finite vortex sheet (an example is found behind an
aircraft wing) will tend to roll up like a carpet into some-
thing much more round (in the aircraft example, the sheets
become the trailing vortices). Any vortex that is not circular
will try to make itself more nearly circular since the circular
vortex is the lowest-energy state.

On the other hand, the conservation law for angular
momentum dictates that, when vortices combine or an ir-
regularly shaped vortex becomes more circular, not all of
the vorticity can enter the core of the resultant vortex. In
fact, some part of the vorticity is found in thin filaments
outside the large vortex; they resemble the arms of a spi-
ral galaxy. The consequence of the creation of filaments is
that, although fluctuations in the energy are transferred to
large scales, fluctuations of vorticity (called enstrophy) are
transferred to smaller scales.

Although the turbulence that geophysicists and en-
gineers deal with is almost always three-dimensional, two-
dimensional turbulence is very nearly realized in the atmo-
sphere and the oceans. Because the vertical length scale
in these flows is much smaller than the horizontal length
scales, the magnitude of the vertical velocity is much
smaller than the magnitude of the horizontal velocity com-
ponents (especially on the largest scales), making the tur-
bulence essentially two-dimensional on the largest length
scales. The large vortices are seen as the big weather sys-
tems in satellite photos and as the mean circulation and
large gyres found in the ocean.

Furthermore, even though turbulence in geophysi-
cal and engineering systems is three-dimensional, the two-
dimensional processes of vortex agglomeration still play
a significant role in them. Pairing may occur but, when it
does, it occurs locally; only parts of each participating vor-
tex merge. Tearing may also occur locally. These processes
are responsible for much of the transfer of energy to large
scales that is important in three-dimensional turbulence.

2.3.2 Homogeneous turbulence
Homogeneous turbulence is, by definition, a flow

whose state is independent of location from a statistical
point of view. This means that measurement of any aver-
aged quantity yields identical results at any point in the
flow. In the laboratory, an approximation to homogeneous
turbulence is created by passing a flow through a screen,
which produces uniform turbulence. Homogeneous turbu-
lence may be subjected to various “extra strains,” provided
that they are independent of position in the flow; these in-
clude strain (plane, axisymmetric, or more general), shear,
rotation, stratification, compression, and combinations of
these.

Many of the processes observed in inhomogeneous
turbulence are also found in homogeneous turbulence. What
is probably most interesting is that, in geophysical and
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10 Turbulence: its origins and structure
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Fig. 2.10. A typical “worm” found in isotropic turbulence.

engineering flows, the most common type of “strain” is
shear, whereas in the homogeneous flows, a much wider
variety of mean strains is readily produced. This makes
them interesting to study and difficult to model, principally
because the dominant type of structure is different in each
flow. The structures are generally vortices of the type that
is most amplified by the imposed strain.

In isotropic turbulence, the simplest homogeneous
flow, there is no strain of any kind. Therefore no energy is
added to the turbulence (there is no “production”) and the
turbulence decays. It is possible to force the large scales and
thereby maintain isotropic turbulence in a steady statistical
state in simulations, but there is no way to do this in the
laboratory.

Despite the simplicity of this flow, it does de-
velop characteristic structures. Long thin vortices (called
“worms”) are created and seem to be responsible for much
of the dissipation. They are illustrated in Fig. 2.10. It is
not yet known whether these structures also exist in other
turbulent flows. If they do, it may be important to consider
them in turbulence modeling. An explanation of their cre-
ation and long lifetimes was given by Jiménez and Orlandi
(1993).

Because shear flows are important to geophysicists
and engineers, it is worthwhile to consider what happens
in homogeneous shear flow; to be definite, we assume that
the mean flow is in the x direction and its gradient is en-
tirely with respect to the y direction, i.e. ∂U/∂y is the only
non-zero derivative of the mean velocity. At moderate shear
rates, the dominant type of structure is very similar to the
ones found in free shear flows and wall-bounded flows. One
finds “hairpins,” vortices with heads transverse to the mean
flow (in the z direction) and legs that are rather close to-
gether and inclined at about 45◦ with respect to the direction
of the mean flow extending backward in the direction of the
mean flow from the head. The vorticity in the two legs is
of opposite sign and so the legs act as a pump that moves
conserved quantities vertically through the flow. (For more
details, see Moser and Rogers, 1993.)

At high shear rates, the vortices become almost par-
allel to the flow (x) direction as was demonstrated by Lee
et al. (1993), who speculated that these structures might be
related to the streaks found in the near-wall region.

2.3.3 Fully developed shear flows
When a free shear flow or a boundary layer reaches

the stage at which the turbulence is said to be fully de-
veloped, it continues to grow in thickness but only very
slowly. The mean turbulence quantities also change rela-
tively slowly and one speaks of the flow being in “equilib-
rium,” which means that there is a near balance between the
rate at which turbulence energy is produced (more precisely,
the rate at which energy is transferred from the mean flow
to the turbulence) and the rate at which turbulence energy
is dissipated (more precisely, transferred to internal energy
of the fluid by the action of viscosity).

The above is based on the conventional view in
which a turbulent flow is considered to be composed of
a mean flow and fluctuations that constitute the turbulence.
Implicit in this view is the notion that the fluctuations are
small in some sense. It is also worth noting that, in other
contexts in which concepts of this kind are used, the fluc-
tuations are regarded as random. Historically, this decom-
position, which originated with Osborne Reynolds, was ap-
plied to turbulence as well. As we have shown above, there
is ample reason for believing that turbulence is not of this
character. Nonetheless, this view persists and colors much
of the thinking in turbulence research. We shall return to
this subject later.

Provided that no additional significant forces or
strains are imposed on the turbulence, the processes that
produce turbulence in a fully developed flow are appar-
ently quite similar to those in the transition process. We say
apparently because the case is far from closed at this time,
but it has been verified for low-Reynolds-number flows that
have been studied in the laboratory and/or by simulation; it
is yet not known whether it remains true at high Reynolds
number. When the Reynolds number is high, the ratio of
noise to coherent structures increases, making it difficult to
find the latter, assuming that they do indeed exist.

Thus, in free-shear flows, stretching of vortices by
the mean flow continues to be the major mechanism for the
production of turbulence. In free-shear flows, vortex pairing
on a local basis appears to be an important process, as is the
production of hairpin vortices by the stretching produced
by the mean shear. Pumping of fluid by the hairpins remains
responsible for much of the transfer of conserved properties
across the flow. A major difference is that the hairpins are
not as clearly defined in fully developed turbulence. This
will become clearer when we look at the boundary layer.

2.3.4 Wall-bounded flows
The differences, at least from the structural point

of view, between wall-bounded shear flows and free shear
flows is not as great as one might think. The effects of
the wall are impermeability (prohibition of flow through
the wall) and a no-slip condition (frictional reduction of the
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