THE MECHANICS OF THE CIRCULATION

SECOND EDITION

Continuing demand for this book confirms that it remains relevant over 30 years after its first publication. The fundamental explanations are largely unchanged, but in the introduction to this second edition the authors are on hand to guide the reader through major advances of the last three decades.

With an emphasis on physical explanation rather than equations, Part I clearly presents the background mechanics. The second part applies mechanical reasoning to the component parts of the circulation: blood, the heart, the systemic arteries, microcirculation, veins and the pulmonary circulation. Each section demonstrates how an understanding of basic mechanics enhances our understanding of the function of the circulation as a whole.

This classic book is of value to students, researchers and practitioners in bioengineering, physiology and human and veterinary medicine, particularly those working in the cardiovascular field, and to engineers and physical scientists with multidisciplinary interests.

"... essential reading for anyone who is interested in the mechanics of the circulation. The normally incomprehensible mechanical laws are explained so clearly that even the non-mathematically minded will have no difficulty, which makes me very sorry that it was not available when I was grappling with these problems."

DAVID MENDEL, Journal of the Royal Society of Medicine

'Like a good sculpture which leaves no chisel marks on the marble, there are no marks of individual specialization in this book. All is well integrated toward the physiology of circulation ... After reading the book, one would wonder how can circulation physiology be understood without such a study of mechanics. It cannot! I recommend this book to all physiology teachers and students.'

Y. C. FUNG, Journal of Biomechanical Engineering

'Here is a book on the mechanics of the circulation that is equally accessible to those trained in the life sciences and in the mechanical sciences.'

SIR JAMES LIGHTHILL, Journal of Fluid Mechanics

Cambridge University Press 978-0-521-15177-1 — The Mechanics of the Circulation C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, Assisted by K. H. Parker Frontmatter <u>More Information</u>

THE MECHANICS OF THE CIRCULATION

SECOND EDITION

C.G. CARO Imperial College

T.J. PEDLEY University of Cambridge

R.C. SCHROTER Imperial College

> W.A. SEED Imperial College

With the Assistance of

K.H. PARKER Imperial College

Cambridge University Press 978-0-521-15177-1 — The Mechanics of the Circulation C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, Assisted by K. H. Parker Frontmatter <u>More Information</u>

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521151771

© Cambridge University Press 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data The mechanics of the circulation / C.G. Caro . . .[et al.]. – 2nd ed. p. cm.

Includes bibliographical references and index. ISBN 978-0-521-15177-1 (pbk.)

1. Hemodynamics. 2. Blood - Circulation. I. Caro, Colin G. (Colin Gerald) II. Title.

QP105.M4 2011 612.1´1 – dc23 2011027494

ISBN 978-0-521-15177-1 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-0-521-15177-1 — The Mechanics of the Circulation C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, Assisted by K. H. Parker Frontmatter <u>More Information</u>

Contents

Foreword Preface to the First Edition Acknowledgements		<i>page</i> xiii	
		xvii xx	
			Intr
	Part I Background mechanics	1	
1	Particles and continuous materials	3	
2	Particle mechanics	7	
	Position	7	
	Velocity	8	
	Acceleration	12	
	Newton's laws of motion: mass and force	14	
	Momentum	20	
	Work and energy	20	
3	Units	24	
	The difference between units and dimensions	24	
	Mass, length, and time as fundamental units	25	
	The inconvenience of force as a fundamental unit	26	
	Energy and heat	27	
	The concept of substance	27	
	Dimensional homogeneity and consistency of units	27	
	The use of volume and flow rate in physiology	27	
	Système International (SI)	28	
4	Basic ideas in fluid mechanics	31	
	Stress	31	
	Hydrostatic pressure	33	
	Stress in a moving fluid: viscosity	35	
	The equation of motion of a fluid	38	

Cambridge University Press
978-0-521-15177-1 — The Mechanics of the Circulation
C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, Assisted by K. H. Parker
Frontmatter
More Information

vi	Contents	
	Convective and local acceleration	40
	Conservation of mass	41
	Bernoulli's theorem	42
5	Flow in pipes and around objects	45
	Poiseuille flow in a tube	45
	Flow in the entrance region	50
	The idea of the boundary layer	52
	Reynolds number	55
	Turbulence in pipe flow	56
	Unsteady flow in a very long pipe	58
	Effects of constrictions on pipe flow characteristics	61
	Flow in curved pipes	66
	Flow past bodies	69
6	Dimensional analysis	80
	Similarity and the idea of scale models	81
	Some examples of scaling in biological systems	81
	A method of obtaining homogeneous relationships between variables	82
7	Solid mechanics and the properties of blood vessel walls	86
	Definitions of elastic properties	86
	The properties of blood vessel walls	91
	Statics of an elastic tube	100
8	Oscillations and waves	105
	Simple harmonic motion	105
	Simple waves	112
	Damping	116
	Wave reflections and resonance	120
	Linearity	123
	Fourier analysis	126
9	An introduction to mass transfer	128
	Diffusion	129
	The colloidal state	133
	Mass transfer coefficients	133
	Diffusion through pores and membranes	135
	Restricted diffusion	136 137
	Active transport	
	Permeability Filtration through membranes	138 138
	Osmosis	138
	A simple mass transfer model	139
	r ompre muss transfer moder	1 - 1

Cambridge University Press
978-0-521-15177-1 — The Mechanics of the Circulation
C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, Assisted by K. H. Parker
Frontmatter
More Information

	Contents	vii
	The interaction of bulk flow and diffusion	142
	The Schmidt number	145
	Part II Mechanics of the circulation	147
10	Blood	149
	Viscosity of fluids and suspensions	149
	Spherical particles	151
	Asymmetric particles	154
	Viscosity of plasma	155
	Osmotic pressure of plasma	156
	The suspended elements	157
	The blood cells	157
	Red cells	158
	White cells	165
	Platelets	165
	Blood coagulation	167
	Thrombosis	168
	Mechanical properties of whole blood	169
	Sedimentation of red cells	170
	Principles of measurement of blood viscosity	171
	Viscous properties of blood	174
11	The heart	178
	Anatomy of the heart	179
	The cardiac cycle	183
	Electrical events	183
	Mechanical events	184
	Properties of cardiac muscle	186
	Structure	186
	Static mechanical properties of cardiac muscle	189
	Dynamic mechanical properties of cardiac muscle	191
	Summary	201
	Mechanical behaviour of the intact heart	202
	Left ventricular shape and wall stresses	204
	Right ventricular shape	209
	The mechanics of the entire ventricle	210
	Summary	224
	Fluid mechanical aspects of cardiac function	225
	Right heart	225
	Left heart	227
	Sounds and murmurs in the heart	234

viii	Contents	
	Sounds	234
	Murmurs	236
	Further reading	237
12	The systemic arteries	238
	Anatomy and structure	239
	The anatomy of large blood vessels	239
	Branching ratios and angles	241
	The structure of the arterial wall	244
	Arterial wall thickness	250
	Changes in the arterial wall with age	251
	Blood pressure and flow in systemic arteries	255
	Transmural pressures	256
	Unsteady pressure in large arteries	259
	Flow	262
	Terminology	265
	Fourier analysis	266
	Wave propagation in arteries	269
	The Windkessel model	270
	The propagation of the pressure wave	271
	Determination of the wave speed	272
	Comparison of theory with experiment	275
	Further limitations of the simple elastic model	277
	Reflection and transmission of the wave at junctions	278
	Reflection at a single junction	278
	The matching of impedances	281
	Positive and negative reflection	283
	Physiological evidence of wave reflections	285
	Multiple reflections	288
	Interpretation of observed pressure waveforms in large arteries	291
	The effect of taper	294
	The influence of nonlinearities	297
	Viscous effects	299
	Effect of blood viscosity on flow-rate waveform	299
	Effect of viscosity on wave propagation	301
	Effect of wall visco-elasticity	304
	Other types of wave	304
	Flow patterns in arteries	306
	Velocity profiles in large arteries	306
	Physical mechanisms underlying the velocity profiles	313
	Stability and turbulence	321

Cambridge University Press 978-0-521-15177-1 — The Mechanics of the Circulation C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, Assisted by K. H. Parker Frontmatter <u>More Information</u>

	Contents	ix
	Mixing and mass transport in arteries	328
	Mixing in the heart and large blood vessels	328
	Mass transport across artery walls	333
	Appendix: Impedance	338
	Further reading	341
13	The systemic microcirculation	343
	The organization of a microvascular bed	344
	The arteriolar system	344
	The capillary system	346
	The venular system	349
	The lymphatic system	350
	The structure of the vessels of the microcirculation	350
	The arterioles	351
	The capillaries	353
	The venules	358
	The lymphatics	360
	The junctions between vascular endothelial cells	360
	The pinocytic vesicles	363
	The interstitial space	363
	Static mechanical properties of the microcirculatory vessels	363
	Elastic properties of the arterioles	364
	Mechanical properties of the capillaries	366
	Elastic properties of the venules	368
	Pressure in the microcirculation	368
	The distribution of pressure	368
	The propagation of cardiac pressure oscillations	375
	Pressure in the interstitial space	376
	Flow in models and in the large vessels of the microcirculation	378
	The motion of single particles at very low flow rates	378
	The motion of single particles at high flow rates	381
	The motion of single red blood cells in Poiseuille flow	381
	The flow of concentrated suspensions of particles and red cells	384
	The viscosity of whole blood	386
	Radial dispersion of red cells	387
	The cell-free layer	387
	Velocity profiles in vessels	391
	Blood flow in capillaries	392
	Positive clearance	394
	Negative clearance	396
	Mass transport in the microcirculation	399

Cambridge University Press
978-0-521-15177-1 — The Mechanics of the Circulation
C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, Assisted by K. H. Parker
Frontmatter
More Information

x	Contents	
	Filtration and reabsorption of water within single capillaries	400
	Capillary pressure and filtration of water in whole organ preparations	405
	The dependence of plasma oncotic pressure on protein	403
	concentration	407
	Evidence for the existence of filtration pores in the capillary wall	407
	Diffusion across the capillary wall	408
	Methods of measuring permeability coefficients	410
	The diffusion pathway across the capillary wall	417
	The Pappenheimer equivalent pore theory	418
	The pathway for water transport across the capillary wall	419
	The transport of large molecules	420
	Further reading	424
14	The systemic veins	426
	Anatomy	427
	Transmural pressure and static elastic properties	429
	The resistance to bending of a tube wall	438
	Dynamics of blood flow in large veins	440
	Observed pressure and flow-rate waveforms	441
	Wave propagation in veins	443
	Flow patterns and velocity profiles in veins	450
	Flow in collapsible tubes	451
	Model experiments	452
	Mechanisms	456
	Physiological evidence: Korotkoff sounds	459
	Mechanics of venous beds	460
	Elevation of a venous bed above the level of the heart	461
	Contraction of skeletal muscle	461
	Respiratory manoeuvres	464
15	The pulmonary circulation	467
	Anatomy	468
	Pulmonary circulation	468
	Bronchial circulation	475
	Transmural pressure and static elastic properties of vessels	475
	Intravascular pressure	476
	Perivascular pressure	476
	Elastic properties	480
	Pulmonary blood volume	482
	Dynamics of blood flow in large pulmonary vessels	489
	Waveforms	489

Cambridge University Press 978-0-521-15177-1 — The Mechanics of the Circulation C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, Assisted by K. H. Parker Frontmatter <u>More Information</u>

Contents	xi
Wave propagation	491
Flow patterns	494
Pulmonary vascular resistance	494
Flow in the alveolar sheet	494
Zonal distribution of blood flow	499
Effect of lung mechanics	501
Further reading	504
Index	507
Table I	524

Cambridge University Press 978-0-521-15177-1 — The Mechanics of the Circulation C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, Assisted by K. H. Parker Frontmatter <u>More Information</u>

Foreword

When I arrived at the Physiological Flow Studies Unit, Imperial College, in 1971, the writing of *The Mechanics of the Circulation* was already underway. The book had been commissioned by Oxford University Press to be delivered in 1972 and the Tuesday afternoon book meeting was a regular event. From the outset, the purpose of the book was seen as presenting cardiovascular mechanics in a rigorous but accessible way. It was not meant to be a textbook, but an introduction to the subject that would be useful to a wide range of readers from medical students to experts in either mechanics or cardiovascular physiology.

The Mechanics of the Circulation was finally published in 1978 and it was obvious that the authors had succeeded in their purpose. It was a truly interdisciplinary book, its authors having trained in medicine, mathematics and engineering, but there was a continuity of style and content that remains unusual in multidisciplinary, multi-author books. Individual authors wrote the first drafts of the different sections of the book closest to their expertise, but they all had an equal say in the final product which, as evidenced by the time it took to write the book and the heat that was generated in those weekly meetings, was no easy task.

The book had an enormous impact on the emerging field of cardiovascular mechanics and, by extension, on the development of the discipline of bioengineering as an essentially multidisciplinary field of study. It was reprinted and published as a paperback. Then, for reasons known only to the publisher, it was allowed to go out of print. In the years that followed there were occasional discussions about writing a second edition to incorporate the many advances that had taken place in the understanding of the cardiovascular system. But, because of other pressures and activities, the authors never found the time and the book became unavailable (except for the Russian and Chinese translations which continued to be available for several decades).

With the authors all retired, new discussions arose about a second edition and I was very honoured to be asked to be involved. We had many meetings about the changes that were needed and how the book could be made more relevant to the present time. It very quickly became evident, however, that the explosion of knowledge about the

Cambridge University Press 978-0-521-15177-1 — The Mechanics of the Circulation C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, Assisted by K. H. Parker Frontmatter <u>More Information</u>

xiv

Foreword

physiology and mechanics of the cardiovascular system during the past 30 years made it impossible to embrace the whole subject in a single book. After much discussion, it was decided that the one thing that has remained constant over the years is the basic mechanics, which was the primary subject of the original book. We therefore decided to republish rather than rewrite the original book. This volume, with the addition of this foreword, a new preface, a few minor corrections and a greatly enhanced index, is the result.

Some flavour of the differences in research on the circulation between 1970 and 2010 can be gained simply by considering the way the old and the new versions of the book were produced. The original book was written in longhand and transcribed by a typist. Editing involved handwritten comments in the margins and the index involved annotated filing cards that were sorted by hand. The book was set by hand and the figures were reproduced using photolithography. The current book was prepared by scanning the original into a text file generated by an optical character recognition program. The text files were edited on a computer into a LaTeX file which generated the final format electronically. The output of the LaTeX program was edited via email and the new index was generated using the 'makeindex' function in LaTeX. Finally, a LaTeX-compatible printing press was used to convert the electronic form of the book into the printed hard copy. Every aspect of cardiovascular science has undergone a similar revolution.

In the compilation of a new, greatly expanded index for this volume, I have been struck by two things about *The Mechanics of the Circulation*: its completeness and its cohesiveness.

In the course of introducing the mechanics of the circulation, the book covers the anatomy and physiology of the circulation in considerable detail and even includes some examples of its pathology. There are, inevitably, some omissions. For instance, the extracellular material at the outer surface of endothelial cells receives only the most fleeting of mentions in Chapter 13 and is never named as the glycocalyx. And in the extensive discussion of waves in the circulation there is no mention of the water hammer equation that so conveniently relates changes in pressure and velocity. It is remarkable, however, how rare these omissions are given the breadth of material covered.

Even more impressive is the cohesiveness of the book. The authors have taken great care in the cross-referencing between the different sections. 'Part I: Background mechanics' provides a thorough grounding in basic mechanics, with extensive links to the application of these principles to the cardiovascular system. 'Part II: Mechanics of the circulation' deals with the different parts of the circulation in turn. Here the links are not only to the basic principles, but also to the other parts of the circulation with similar or opposing properties.

From my personal experience and from the experience of other colleagues working on the circulation, *The Mechanics of the Circulation* is a very valuable book. It Cambridge University Press 978-0-521-15177-1 — The Mechanics of the Circulation C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, Assisted by K. H. Parker Frontmatter <u>More Information</u>

Foreword

XV

provides an introduction to mechanics for those trained in physiology, medicine and biology and an introduction to the anatomy and physiology of the circulation for those trained in mechanics, engineering and mathematics. Virtually everyone I know in the field has a well-thumbed copy on their bookshelf and many have used it as a basic text for both undergraduate and graduate courses.

Thirty years after its original publication, I am delighted that this classic book is once again being made available to experts and, most importantly, to students – the experts-to-be.

Kim H. Parker July 2010