

```
Γ-function
                                                      analytical function, 39
  multidimensional, 83
                                                      associated distribution, 272
  one-dimensional, 82
                                                      associated homogeneous distribution
\Gamma-functions connected with p-adic quasi
                                                         p-adic, 84
        associated homogeneous distributions,
                                                      associated homogeneous distribution (real
                                                              setting), 287
\Gamma-functions connected with real quasi
                                                      asymptotic
                                                         distribution
        associated homogeneous distributions,
                                                            p-adic, 281
\mathbb{Q}_p and the Cantor-like sets, 28
                                                            real setting, 267
\eta-self-adjoint
                                                         expansion
  Hamiltonian, 221
                                                            of a distribution, 250
  operator in \mathcal{L}_2(\mathbb{Q}_p), 218
                                                            parameter of stabilization, 250
p-adic
                                                            stable, 250
  additive valuation, 6
                                                         of the Fourier integral
                                                            p-adic setting, 248
  criterion of series convergent, 36
  order of a rational number, 6
                                                            real setting, 249
  Schrödinger-type operator, 209
                                                         sequence, 250
  series, 36
  Tauberian type theorem, 231
                                                      ball
  units, 20
                                                         in \mathbb{Q}_p
  wavelet, 106
                                                            closed, 21
p-adic number
                                                            open, 21
  canonical form, 17
                                                         in \mathbb{Q}_p^n, 33
  fractional part, 18
                                                      Bernoulli numbers, 317
  integer, 19
  integer part, 18
                                                      canonical
B-function, 83
                                                         1-sequence, 61
"natural" set of shifts for \mathbb{Q}_p, 112
                                                         \delta-sequence, 61
"variable separation method", 194
                                                      Cantor-like set, 25
                                                      Cauchy sequence, 2
adelic formula, 10
                                                      change of variables in integrals, 52
algebra of asymptotic distributions
                                                      character
  p-adic, 279
                                                         additive of the field \mathbb{Q}_p, 40
  real setting, 266
                                                         additive of the group B_{\nu}, 40
almost quasihomogeneous distribution, 291
                                                         multiplicative of the field \mathbb{Q}_p, 43
```


multiplicative of the group S_0 , 44	of a convolution, 73
normed multiplicative, 44	of a test function, 68
clopen, 22	of distribution, 71
Colombeau-type algebra	of quasi associated homogeneous
p-adic setting, 271	distribution (real setting), 313
real setting, 264	Friedrichs extension of the symmetric
Colombeau–Egorov	operator, 222
algebra, 271	function
generalized function, 271	automodel (or regular varying), 232
generalized number, 273	locally constant, 54
completion procedure, 11	of generalized functions, 272
complex-conjugate <i>p</i> -adic wavelet basis, 212	or generalized ranetions, 272
connection between the p -adic and real Haar	conceplized convelution of commetation
wavelets, 111	generalized convolution of asymptotic
construction of	distributions, 283
<i>p</i> -adic Haar multiresolution analysis, 115	group of invertible elements in \mathbb{Z}_p , 20
<i>p</i> -adic Haar wavelet basis, 118	
convergence	Haar measure, 47
in $\mathcal{D}(\mathbb{Q}_p^n)$, 56	in \mathbb{Q}_p^n , 48
in $\mathcal{E}(\mathbb{Q}_p^n)$, 55	on \mathbb{Q}_p
convolution of distributions, 65	additive, 47
	multiplicative, 48
density of the Lizorkin space $\Phi(\mathbb{O}^n)$ in	Haar wavelet
density of the Lizorkin space $\Phi(\mathbb{Q}_p^n)$ in	2-adic, 121
$\mathcal{L}^{\rho}(\mathbb{Q}_p^n)$, 104 density of the Lizorkin space $\Phi_{\times}(\mathbb{Q}_p^n)$ in	2-adic real case, 126
	p-adic case, 128
$\mathcal{L}^{\rho}(\mathbb{Q}_{p}^{n}), 104$ dilatation operator, 288	as eigenfunction of pseudo-differential
Dirac delta-function, 60	operator, 186
direct product of distributions, 63	as eigenfunction of the Taibleson fractional
distribution	operator, 189
principal value of the function, 296	real setting, 106
regular, 60	Haar wavelet basis
with a point support, 60	2-adic multidimensional, 151
distribution asymptotic estimate at infinity, 231	2-adic one-dimensional, 125
distribution asymptotic estimate at minity, 231	<i>p</i> -adic multidimensional, 154
12.	p-adic one-dimensional, 140
equality	real setting, 106
of Parseval–Steklov, 70	Hadamard formula (radius of convergence for
equivalent norms of a normed field, 3	series), 38
Euclidean metric, 6	harmonic regularization of distribution, 266
Euler	Hellinger integral, 332
equation, 309	homogeneous distribution
type system of equations, 309	p-adic case, 80
	multidimensional (real setting), 308
field	homogeneous distribution (real setting), 288
normed, 2	
of <i>p</i> -adic numbers \mathbb{Q}_p , 14	improper integral in \mathbb{Q}_p^n , 49
Fourier transform	inequality
for a distribution with a compact support, 72	of Cauchy–Bunjakovsky, 77
of <i>p</i> -adic homogeneous distribution, 82	of Young, 76
of <i>p</i> -adic quasi associated homogeneous	strong triangle, 1
distribution, 93	triangle, 1

Krein's resolvent formula, 220	Vladimirov's in the Colombeau–Egorov algebra, 276
Loulogien	linear in $\mathcal{D}'(\mathbb{Q}_p^n)$, 62
Laplacian	order in \mathbb{Q}_p , 02
of the good kind, 182	oscillatory integral
of the second kind, 182	p-adic setting, 247
lemma	real setting, 247
Erdélyi, 247	rear setting, 247
Erdélyi (<i>p</i> -adic	
version), 261	parameter of constancy of a locally constant
Heine–Borel, 24	function, 56
linear change of variables for a distribution, 62	point value of generalized function, 273
linear space of asymptotic distributions	points of interaction, 224
real setting, 267	principal ideal
locally compact group, 47	of the ring, 20
	of the ring \mathbb{Z}_p , 20
maximal ideal	principal value integral in \mathbb{Q}_p^n , 49
of the ring, 20	product of asymptotic distributions
of the ring \mathbb{Z}_p , 20	real setting, 268
metric, 1	pseudo-differential equation
non-Archimedean, 1	linear evolutionary of the first order in t , 197
Monna map, 30	linear evolutionary of the second order in t ,
multiplicative group	202
of the field, 2	semi-linear evolutionary, 205
of the field \mathbb{Q}_p , 19	simplest, 194
of the ring \mathbb{Z}_p , 20	pseudo-differential operator
multiresolution analysis, 106	conjugate, 182
2-adic Haar multidimensional, 151	in the Lizorkin space $\Phi'(\mathbb{Q}_p^n)$, 182
<i>p</i> -adic, 112	in the Lizorkin space $\Phi(\mathbb{Q}_p^n)$, 182
p-adic multidimensional, 149	spectral theory, 184
non-Haar wavelet	quasi associated homogeneous distribution
p-adic multidimensional basis, 166	p-adic, 83
p-adic one-dimensional basis, 158	multidimensional (real setting), 309
as eigenfunction of pseudo-differential	real setting, 302
operator, 184	quasi-asymptotics
as eigenfunctions of the Taibleson fractional	at infinity, 232
operator, 189	real case, 292
norm	at zero, 233
p-adic, 6	real case, 292
non-Archimedean, 3	quasihomogeneous distribution, 290
on the field, 2	
trivial, 3	rank
	of the additive character, 40
operator	of the normed multiplicative character, 45
conjugate, 62	refinable function
fractional	<i>p</i> -adic, 108
multidimensional Taibleson's, 180	refinement equation
multidimensional Vladimirov's, 178	2-adic, 108
one-dimensional, 176	<i>p</i> -adic, 140
Taibleson's in the Colombeau-Egorov	"natural", 108
algebra, 277	for real Haar multiresolution analysis, 108

residue field, 20	sphere
Riesz fractional operator (real setting), 99	in \mathbb{Q}_p , 21
Riesz kernel	in \mathbb{Q}_p^n , 34
of multidimensional Taibleson's fractional	stabilization of a solution to linear
operator, 179	evolutionary pseudo-differential
of multidimensional Vladimirov's fractional	equation of the first order in t , 200
operator, 177	stabilization property of sequence of <i>p</i> -adic
of one-dimensional fractional operator, 175	norms, 35
	standard one-dimensional Schrödinger
Shannon-Kotelnikov	operator, 222
<i>p</i> -adic basis, 169	support of distribution, 60
p-adic multiresolution analysis, 170	
refinable function (real setting), 170	theorem
space	Abelian, 230
\mathbb{Q}_p^n , 33	Fubini, 50
$\mathcal{L}^{\rho}(A)$, 49	Lebesgue dominated convergence, 50
$\mathcal{L}_{loc}^{\rho}(\mathcal{O}), 49$	of "decomposition of the unity", 58
compact topological, 23	of "piecewise sewing", 61
complete metric, 2	of characterization
connected topological, 23	for <i>p</i> -adic homogeneous distributions,
disconnected topological, 23	81
finite-dimensional of test functions	for p-adic quasi associated homogeneous
$\mathcal{D}_N^l(\mathbb{Q}_p^n)$, 56	distributions, 89
locally compact topological, 23	Ostrovski, 8
metric, 1	Riemann–Lebesgue, 75
of Bruhat–Schwartz distributions $\mathcal{D}'(\mathbb{Q}_p^n)$,	Schwartz of "kernel", 64
58 ~	Shannon-Kotelnikov
of distributions $\widetilde{\Phi}'(\mathbb{Q}_p^n \times \mathbb{R}_+)$, 194	<i>p</i> -adic, 168
of distributions $\mathcal{D}'(\mathcal{O})$, 59	real setting, 168
of Lizorkin distributions of the first kind,	Tauberian, 230
100	with respect to asymptotics, 234
of Lizorkin distributions of the second kind, 101	with respect to quasi-asymptotics, 240
of Lizorkin test functions of the first kind, 99	
of Lizorkin test functions of the second kind, 101	ultrametric, 1
of locally constant functions $\mathcal{E}(\mathcal{O})$, 54	vector-valued distribution
of real Lizorkin test functions, 98	p-adic setting, 280
of test functions $\mathcal{D}(\mathbb{Q}_p^n)$, 56	real setting, 267
of test functions $\mathcal{D}(\mathcal{O})$, 57	<u>.</u>
totally disconnected topological, 23	wavelet, 106
ultrametric, 1	weak convergence in $\mathcal{D}'(\mathbb{Q}_p^n)$, 58
	- r