Index

abbreviations xiv
abbreviations used xv–xvii
and Système International xiv
absorption spectra 95–97
acetate thiokinase (problem 17) 169
ages of children (problem 34) 186
algebra 19–31
amounts and concentrations 64
anaerobic respiration 103
ANOVA 63
answer, ridiculous 5–6
antilogarithms 37
assay system for enzyme 73
assessment of growth 121–123
atoms in one bacterium (problem 4) 156
ATP synthesis in respiration 104–105
autotrophs 100
average lifetime of radioisotope 46
Avery and Macleod 142
Avogadro’s number 64, 233
back-of-envelope calculations 7–8
background counts 118
bacteriochlorophyll (problem 18) 170
bases used for logarithms 33
batch cultures 121–131
becquerel (unit) 117
Beer’s law 89
Beer–Lambert law 89
rearrangement of 89
biolum (problem 5) 157
buffers 68
burst size 130
calculation
from graphs (Chapter 3) 190–192
of μ_{max} and K_s (problem 10) 164
calculations, back-of-envelope 7–8
candela 112
capsular polysaccharide (problem 25) 178
carbon monoxide oxidation (problem 7) 160
Carr, John Dickson 233
catalytic constant 76
channel ratio and efficiency of counting 116
Chargaff, Erwin 142
chemolithotrophs 100
chemostat 133–138
K_s and μ_{max} 136
limiting substrate 136
maintenance energy 138
problem example and answer 138–141
properties 135
yield value 138
chromatography 80
cloning vectors 145
colorimetric assays 91
complex numbers 1
counters 234
centration 116
counting v. amount in spectrophotometry 92–94
certainty limits 54–55
continuous culture 132–138
controls for enzyme assay 73
copy number of plasmid (problem 21) 173
Coronation Day 234
coupled assay of enzyme 78
(problem 33) 185
counting channels 116
counting radioactivity, statistics 119
counts of thiobacilli (problem 16) 168
crossing-over 143
problem (30) 182
curie (unit) 117
cuvette 87
cyanobacteria (problem 31) 184
cyclic photophosphorylation 108
database management xi
data-handling xi–xii
decay of radioisotopes 45–46
decay constant of radioisotope 45
diaminopimelate dehydrogenase
(problem 33) 185
diaminopimelate epimerase assay
(problem 33) 185
diaminopimelate incorporation (problem 24) 176
diluting of solutions in colorimetric assays 97
dilution rate, in chemostat 134
dilutions 69–71
precision of 71
serial dilution 71
dipicolinate assays (problem 27) 179
DNA
discovery by Miescher 142
preparing radioactive (problem 22) 173
role in genetics 142
structure 142
Dollan, Miss 233
double-beam spectrophotometer 98
double labelling (with radioisotopes) 118
dumbing down 234
e, value of 38
efficiency of counting radioactivity 115
electrode potentials 101–103
electron donors, inorganic 101
electron-transport chain 104
electrophoresis, gel (problem 19) 170
endonucleases 145–146
energy metabolism 99–112
entropy 99
enzymes 73–86
amount of enzyme and rate 76
assay system for 73
coupled assays 78
extracting enzymes 77–78
kinetics 74
no enzyme control 73
no substrate control 73
purification 79
purification (problem 23) 175, 176
turnover number 76
unit of enzymic activity 76
equation for bacterial growth (problem 11) 165
equations
and graphs 22
devising 19
quadratic 22–25
rearranging 29–31
simultaneous 25–28
solving 21
solving graphically 16–18
substituting into 21
erythrose phosphate (problem 29) 182
Euler 34, 48
examinations 234
excretion of lysine (problem 20) 172
exponential growth 40–43
exponential phase 124
expression vectors 145
extinction 88
molar extinction coefficient 91
fermentations 106
fixation of CO₂ 110
free energy change in oxidation-reduction reactions 102
β-galactosidase (problem 3) 155
genetic code 142
genetics 142–149
worked-out problem 149–150
glutamate synthase 83–86
gradient elution of enzyme (problem 9) 162–163
gradient-forming device 162
gradients, of graphs 13
graphs 9–18
and equations 22
axis labelling 11
drawing 9–13
gradients 13
intercepts 13
reading off values 13–16
standard curves 14
test samples, reading off 14
graphical solving of equations 16–18
growth, assessment of 121–123
phases of 123
growth rate, in chemostat 134
half-life of radioisotope 45, 113
high rates of counting radioactivity 119
hints 188–189
incorporation of labelled diaminopimelate (problem 24) 176
indices 2–3
indirect methods of counting microorganisms 123
inhibitors of growth 127–129
intensity of light 112
intercepts, of graphs 13
ion-exchange chromatography 80
irrational numbers 1
isocitrate lyase (problem 17) 169
isotopes 113
Kₘ (Michaelis constant) 75
Kᵣ for chemostat 136
kinetics of enzymic reaction 74
lag phase 123
Lambert’s law 89
learning data-handling xi
light, intensity 112
limiting substrate in chemostat 136
Lineweaver–Burk plot 75
litre, abbreviation for xv
logarithms 32–49
antilogarithms 37
base 2 190
bases used 33, 38
conversion of logarithms to different
base 37
definition 32, 34
derivation of word 35
discovery 34
Napier 34
problem (2) 152–155
natural logarithms, calculation of 36
uses 39–40
logarithmic function 46
extinction 47
pH scale 47
pH value, averaging 47
lysine assay (problem 20) 172
lysogeny 130
maintenance energy 138
problem (28) 181
making up problems 233
mapping restriction sites 146
maths in data-handling xiii
maximum growth rate (μ_{max}) in
chemostat 136
problem (28) 181
means, comparison of two 56–63
rationale of test to compare means 57
methionine in protein (problem 32) 184
Michaelis constant K_M 75
Michaelis–Menten equation 75
microbiological assays 125
microtitre plate 127
Miescher, Friedrich 142
Miller, Keith 56
Millikan, and oil-drop experiment 233
minimum effective dose 129
minimum inhibitory concentration 127
mixtures
of solutes 68
of solvents 69
molar extinction coefficient 91
molarity 66
molecular exclusion chromatography 80
molecular weight of polysaccharide
(problem 14) 167
mutants 143
Napier 34
no enzyme control 73
no substrate control 73
non-parametric tests 61–63
problem (16) 169
non-sulphur bacteria 109
normal (Gaussian) curve 57
normality 67
numbers 1
complex 1
in standard form 4
irrational 1
rational 1
real 1
nutrient limitation (problem 6) 158
nutrient uptake in chemostat 137
one-tailed and two-tailed tests 60
optical density 94, 123
logarithm of optical density, plotting 95
oxidation
of CO (problem 7) 160
of methanol 100
oxidation reactions 99–104
parent strains and mutants 143
pathlength, of light beam 87
percentage composition 67
percentage GC in DNA 143
calculation of (problem 22) 174
percentage transmittance 88
pH scale 47
phage integration 143
phosphorus assay (problem 12) 165
photochemistry 110
photolysis of water 107
photons 111
problem (31) 183
photophosphorylation, cyclic 108
photosynthesis 107–110
problem (31) 184
pipetting errors 71
plasmid
copy number 173
integration 143
integration (problem 30) 183
poly β-hydroxybutyrate (problem 1) 151
polysaccharide of cell walls (problem 14) 166
problems 151–187
relating to logarithms (problem 2)
152–155
proton motive force 104
pulse labelling (with radioisotope) 118
purification of enzymes 79
degree of purification 81
methods 79
problem (23) 175, 176
recovery of activity 81
table (problem 6)
purity of ATP (problem 12) 157–159, 165
pyruvate carboxylase 82–83
quadratic equations 22–25
quenching agents 115
Index

radioactive DNA (problem 22) 174
radioactivity 113–120
radioisotopes
 as tracers 114
 principal isotopes used 114
 safety 114
rate of growth and enzymic activity 82
example (pyruvate carboxylase) calculation 82–83
example in reverse (glutamate synthase) 83–86
rate of nutrient uptake in chemostat 137
ratio of extinctions at 280 nm and 260 nm 96
rational numbers 1
real numbers 1
realities of counting radioactivity 120
recombinant DNA technology 145
recovery of enzymic activity 81
restriction endonucleases 145–146
restriction mapping 145
 deduce map (problem 13) 166, 183
 deduce map (problem 19) 171
 deduce map (problem 21) 173
 how to deduce map 146
reverse electron flow 103
ridiculous answer 5–6
safety of radioisotopes 114
saturation constant, K_s in chemostat 136
 problem (28) 181
scintillation counting 115–116
scintillation fluid 115
self-absorption of radioactivity 119
semi-logarithmic graph paper 48
serial dilution 71
SI units xiv
simultaneous equations 25–28
soil, sulphur in (problem 8) 161
solutions 64–72
 from impure solutes 71–72
Southern blotting 146
 problem (26) 179
 problem (30) 183
sparse populations 122
specific activity of radioactive material 117
 maximum specific activity 117
 35S-methionine (problem 32) 184
specific growth rate (μ) 44
spectrophotometer 87
 double-beam spectrophotometer 98
spectrophotometry 87–98
spreadsheet 234
standard curves 14
standard deviation 51
standard form of numbers 4
star ratings of problems 188
stationary phase 125
statistics 50–63
 ANOVA 63
 bell-shaped curve 55
 confidence limits 54
 counting radioactivity 119
 descriptive use 50
 mean 51
 median 51
 non-parametric tests 61–63
 normal distribution 55
 population variance 52
 predictive use 50
 sample variance 53
 skewed distribution 56
 one-tailed and two-tailed tests 60
 standard deviation 51
 variance 54
stock reagents, preparing (problem 6) 158
substrate level phosphorylation 106
successive approximations 28–29
sulphur bacteria 108
 non-sulphur bacteria 109
survival at 80 °C (problem 15) 167
Système International xiv
t-test 58
 examples 58–60
 problem (16) 169
teaching data-handling xii
terminal oxidants 103
tetrahydrodipicolinate acetylase
 (problem 20) 172
thermodynamics
 First Law 99
 Second Law 99
thiobacilli (problem 16) 168
total count 122
tracers, radioisotopes as 114
transformants (problem 13) 166
transketolase (problem 29) 182
transposon 148
 problem (26) 178
turbofluids 94
 turbidity measurement 123
 turbidostat 132
 turnover number 76
 problem (7) 160
UDP-muramyl dipeptide (problem 24) 175–176
U-test 62
 unit of enzymic activity 76
V_{max} of enzymic rate 75
variance 51
vectors, cloning and expression 145
<table>
<thead>
<tr>
<th>Index</th>
<th>241</th>
</tr>
</thead>
<tbody>
<tr>
<td>viable counts</td>
<td>122</td>
</tr>
<tr>
<td>virus multiplication</td>
<td>129</td>
</tr>
<tr>
<td>volume of one bacterium (problem 4)</td>
<td>156</td>
</tr>
<tr>
<td>Watson and Crick</td>
<td>142</td>
</tr>
<tr>
<td>weight per unit volume</td>
<td>65–66</td>
</tr>
<tr>
<td>Wilcoxon test</td>
<td>61</td>
</tr>
<tr>
<td>problem (16)</td>
<td>169</td>
</tr>
<tr>
<td>wild-type</td>
<td>143</td>
</tr>
<tr>
<td>Work, Dr Elizabeth</td>
<td>15</td>
</tr>
<tr>
<td>wrong answer</td>
<td>5–6</td>
</tr>
<tr>
<td>X-ray film</td>
<td>116</td>
</tr>
<tr>
<td>(Y_{\text{ATP}})</td>
<td>165</td>
</tr>
<tr>
<td>value (problem 11)</td>
<td>165</td>
</tr>
<tr>
<td>yield value in chemostat</td>
<td>138</td>
</tr>
<tr>
<td>zone assay</td>
<td>127</td>
</tr>
</tbody>
</table>